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An explicit algorithm for the time-stepping solution of the Schrédinger equation is described,
which is second-order accurate in time. It is a staggered-time algorithm, in which the real and
imaginary parts of the wave function are defined at alternate times. The method combines the
speed and simplicity of explicit methods with the accuracy and stability of second-order
implicit methods. Because of this simplicity and speed, the algorithm is well suited for
pedagogical applications on personal computers, as well as for computation-intensive research

applications,

INTRODUGTION

Methods for solving partial differential equations fall into
two general categories: explicit [such as the forward-time
centered-space algorithm given by Eq. (4) below] and im-
plicit (either fully implicit or Crank-Nicholson ) methods.
Explicit methods are much simpler, but, in general, have
the disadvantage that the error is of order Az, so that one
needs an unreasonably small Az to achieve enough accura-
cy even for qualitative pedagogical applications. In the case
of the Schridinger equation the situation is even worse—
this explicit method is always unstable.! Implicit methods
can be made second-order accurate in Az (Crank—Nichol-
son methods) and are stable. However, implicit methods
are slow and complicated because a system of linear equa-
tions must be solved at each time step. The presently pro-
posed staggered-time algorithm has the advantages of both
with the disadvantages of neither.

I. BACKGROUND
The Schrédinger equation is
. dy
i — — H i
o ¢ (1)
in units in which # = 1, where the Hamiltonian is
H= —_V2m+V. (2)

In all of the algorithms we will discuss here, we discretize
the Schrodinger equation on a one-dimensional grid of §¥
points separated by Ar, and approximate the Laplacian V?
by the three-point (“centered-space™?) formula

V() = [¥(r + Art) — 24(r1) ‘
+ ¢(r — Ar,) 1/A°. (3

The approach is easily generalized to two or three dimen-
sions. Either periodic or hard-wall (¥ = 0) boundary con-
ditions can be easily implemented.

In the forward-time centered-space algorithm,? the
time derivative is approximated by a forward difference,

giving

596 COMPUTERS IN PHYSICS, NOV/DEC 199t

Yt + Ary = (1) + iHAnS(2), (4)

where we have suppressed the position index 7, i.e., ¥(¢) isa
vector of N complex components, and H is a complex
N XN matrix. As can be seen by Taylor expanding
(1 + At), this has an error at each time step of order At?,
so that after T /At steps the error is of order TA¢. In addi-
tion, this algorithm is unstable for any choice of Ar and
At

The Crank-Nicholson method improves on this by
thinking of #(z + At) — ¢(¢) as a centered difference, so
that the i on the right-hand side of Eq. (1) is evaluated at
t + Az and approximated by an average:

Yt + Aty — () = + IHAL L[ (et + An) + ¢(5)].
(5)
By Taylor expanding about ¢ + JA¢, it can be seen that this
involves a smaller overall error of order TAz 2. This algo-
rithm also has the advantage of conserving probability; this
follows from the fact that the discrete time-evolution oper-
ator is unitary.' However, it is an implicit algorithm
[¥(r + At) appears on both sides of the equation] so that
solution of an N X N system of linear equations is required
at each time step. To do this straightforwardly requires
O(N?) steps; there are specialized techniques for tridia-
gonal systems' that can reduce the number of steps 1o
Q(N), but it is still at least a factor of 3 slower than an
explicit method. This added complexity also makes the al-
gorithm much less useful in 2 pedagogical context.

Il. ALGORITHM

The present algorithm is motivated by writing the
Schrodinger equation in terms of the real and imaginary
parts R and [ of the wave function:

ff_f(') = dI, (6a)
Z—f(:) = — HR. (6b)

These equations have a structure similar to those for parti-
cle positions and velocities ¢ and v in a trajectory calcula-
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tion (the equation for dR /dt has only f on the right-hand
side, just as dg/dt has only v). Thus it is natural to define R
and [ at staggered times, as is commonly done in trajectory
calculations.” We will define R at times 0,Az,2A¢,..., and /
at 0.5A1,1.5A¢1,... . The natural discretization of Egs. (6} is
therefore

R(1 4 JAr) = R(t — JA1 + AtHI(1), (7a)
Iz + JAry = I(r — JAty — AtHR(1). (7b)

Given “initial” values R (x,0) and I(x,jAt), Eqs. (7) expli-
citly determine the evolution of the system. Like the im-
plicit unitary algorithm, this staggered-time algorithm can
easily be seen to be second-order accurate in At.

The proper definition of probability density
(P =R’ + I? inthecontinuum limit) is not obvious in this
systemm, since R and I are not defined at the same time. The
choice

P(x,t) = R(x,0)* + I(x,t + A0 I (x,2 — JAL) (8a)
at integer r /Ar and
P(x,t) = R(x,t + JADR(x,t — A1) + I{x,1)? (8b)

at half-integer 7 /At can easily be shown to conserve
probability [the discrete time derivative
2, P(x,t + 1At) — X _P{x,t) vanishes identically] and is
therefore the most reasonable choice.

The stability of the new algorithm is analyzed in the
Appendix. The conclusion is that stability is not a limita-
tion: the algorithm is stable for any choices of drand d't that
are reasonable on other grounds.

In Fig. 1 we show an example of the implementation of
this algorithm on an IBM-PC, for a square-well scattering
problem in which the reflection coefficient is approximate-
Iyl

Figure 1 is a screen dump from a Turbo Pascal pro-
gram for the IBM PC which implements the algorithm
described in this paper. It offers the user a menu of poten-
tials and wave functions, which are stored on files, The
program and scenario files may be downloaded via BIT-
NET from the Phys-L physics file list by sending the mes-
sage GET SCHRODZ EXE 10 LISTSERV AT UWF. (In
the VM operating system, the proper syntax is TELL
LISTSERV AT UWF GET SCHRODZ EXE.) The total
time required on a 20 MHz 30386 for the calculation and
display shown is 7 s; even on a 6 MHz AT it is only 20 s.
Thus the new algorithm brings the time down to the order
of magnitude of a typical student attention span.

lll. CONCLUSION

In summary, we have seen that the new staggered-time al-
gorithm has the advantages of both explicit and implicit
algorithms: like explicit ones, it is very fast, and like the
implicit unitary (Crank—Nicholson) algorithm it is stable,
second-order accurate, and conserves probability exactly.
Its speed and simplicity enable the practical use of comput-
er simulation as a pedagogical tool in quantum mechanics.
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FIG. 1. Wave packet of center wavelength 6 Ar (Ar=0.02, Ar=10.2),
incident on a square well of depth 29 and width 3 Ar. {a) Initial condition.
From top, graphs are I, R, probability P, and potential V. (b) Wave func-
tion during the scattering process, showing interference of the incident
and backscattered waves. {c} Wave functions after scattering, showing
reflected and transmitted waves,

APPENDIX

An important criterion for evaluating algorithms of the
sort discussed in this paper is stability. There is no easy way
to treat the case of variable potential ¥, so we will assume ¥
can be regarded as a constant locally, to establish a sort of
“local stability.” As is usually done, we look at the evolu-
tion of a wave function with sinusoidal position depen-
dence ¢ = ¢**, which is an eigenvector of H with eigenval-
ue

h=2sin*(JkArY/mAF + V. (AD)

To analyze stability, we denote the eigenvalue of H dr by
A:
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