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Lecture 1    Wave and Beam optics 
Mostly from Chapters 2, 3, 5 

 
The fundamentals of optics at the introductory level are mostly treated using the  “plane wave” 
model. The plane waves have an infinite extent in the transverse direction.  Plane waves, 
however, never existed in the real world. This lecture is to establish the basics of waves of finite 
cross section. 
 
Wave function 
Light propagates in the form of waves.  In free space, the waves are governed by the wave 
equation, 
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where u is a function of  r and t.     In a one-dimensional system, the solutions are u(x-ct) and 
u(x+ct).   
 
From the theory of electromagnetics, both the E and H fields of the electromagnetic waves in 
vacuum satisfies Eq. (1).   The form of Eq.(1) for E and H can be derived from  Maxwell’s 
equations. 
 
  
 
 
 
 
 
 
 
 
 
The monochromatic harmonic waves can be expressed as  
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where U is known as the complex wave function, and the real part, u(r,t), is given by  
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Why using the harmonic waves? 

 
The “ wavefronts” are the surfaces of equal phase tconsr tan)( =φ . The optical intensity (power 

per unit area) is given by 
2

)()( rUrI = . 
 
The Helmhotz Equation: ( governing  the spatial dependency of monochromatic waves)  
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  Try to prove that both the E and H satisfy equation (1). 
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For a given harmonic function U, the spatial-temporal differential equation in (1) can be reduced  
to  a differential equation in space only.  The function U in Eq.(2) satisfies the following 
equation: 
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is the wave number. 
 
Solution 1:  plane waves 
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where A represents the magnitudes of the electric and magnetic fields.  The plane of constant 
phase is perpendicular to k. ( This can be easily proved by choosing one of the coordinate axes to 
be along the direction of k . Then the derivatives of A in the orthogonal directions are zero.)    
 
From Maxwell’s equations, the vectors of E, H and k are orthogonal to each other. 
 
Solution 2: Spherical waves in the outward direction from the origin. 
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Can be proved by expressing the Laplacian in the spherical coordinates. 
  
This is the wave originating from a point and propagating outward with diminishing intensity 
with the square of the distance. 
 
Solution 3:  Fresnel approximation of spherical waves  (Paraboloidal waves) 
 
At a point close to the z-axis but far  from the origin so that zyx <<+ 2/122 )(  
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Paraxial rays   
The plane-wave solution propagating in the z-direction is given by  
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If the constant amplitude is allowed to vary slowly,  
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where A(z) must vary slowly with position z within the distance of a wavelength.  This is the 
expression for the paraxial  wave in the z-direction.    See picture Figure 2.2-5 
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Conditions for paraxial waves 
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In order that U satisfies the Helmholtz equation,   the complex amplitude must satisfy the 
following paraxial Helmholtz equation:  
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Where   2

T∇ denotes the transverse part of the Laplacian.  This is the slowly varying envelop 
approximation for paraxial rays.     
 
One simple solution to the paraxial Helmholtz equation is by assuming that the field variation 
depends on z and lateral distance only:  
 

z
jk

e
z
A

rA 21

2

)(
ρ−

= .         (10)  

where A1 is a constant and  222 yx +=ρ . Eq. (10) is the same as Eq (7 ).   The higher-order  
field which has an azimuthal  dependence will be discussed later. 
 

To prove the , simply insert (10) into (9). 
 
Gaussian beam  (Chapter 3) 
 
Another useful solution for the paraxial Helmholtz equation is the Gaussian beam: 
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Eq (11) is obtained from Eq (10) with the z axis shifted by a complex  constant.   A special case 
when ξ is a imaginary number (ξ=-jz0) is particularly useful: 
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Now A(r)  becomes the complex envelop of the Gaussian beam.  The parameter z0 is the 
Rayleigh range. (What is the physical meaning of the Rayleigh range?) 
 
To separate the real and imaginary parts of the parameter q(z), we express it using the following 
relation: 
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(The meaning of R and W will be apparent later.) 

 
From Eq.(8), (12), and (13), the wave function for Gaussian beam can be expressed as 
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where 
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Properties of Gaussian beam 
Intensity at any position r:  From (14),   
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where W(z) increases with z according to the following relation: 
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Thus the bema expands with increasing z.    
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The axis is chosen so that the minimum waist occur at z=0.  The beam expands and peak 
intensity decrease with increasing z, according to (20). 
 
Rayleigh range: the distance over which the beam size expands by 2     times or  the intensity  
reduces by a factor or two. 

Depth of focus ---            
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Examples:  For   λ=1.0 µm 
  W0 =                      z0 =   
  1  cm  31400 cm 
   1 mm     314 cm 
                     100  µm                     3 cm 
Beam divergence 
Comparison with the case of  plane waves restricted by an aperture: 
 

D
λθ 22.1=   (half angle of divergence of plane waves of diameter D. 

 
What is the difference in beam profile between Gaussian and truncated plane wave? 

 
For an open aperture of 1 cm and   λ=1.0 µm, the divergence, from the center to the first 
minimum , is 12.2 micro-rad. 
 
For a Gaussian beam of 1-cm waist, the divergence, measured from the center to 1/e2 is 29 
micro-rad. 
 
Definitions: 
 
Far field      z>>z0     
 In the far field, the beam profile remains constant and expands linearly with z.  The shape of the 
beam is simple and does not change with distance.   
  
Near field:   z  on the same order of z0      
The amplitude and phase changes with distance rapidly. 
 
Phase of of Gaussina beam  
From Eq.(14), the  imaginary part of the exponents is  
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Along the axis,when   ρ=0, the phase has two components.  The first component is the phase of 
plane waves and the second is the correction factor given by (19).  The correction is negative. 
The total accumulated   phase deviation from the plane wave  by propagating from z=-∞ to z=+∞ 
is π.  For a Gaussian beam, the wave is a superposition of plane waves in various directions, 
resulting a delay in the z-direction of the composite waves. 
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The constant phase surface can be illustrated by the following diagram: 
 

Spreading and wavefronts of Gaussian beam

1/e2

z>>z0

z
θ0

 
 

Examples of the evolution of the wave fronts at various locations 
  
For plane waves, the W0 = ∞,  the spreading is zero.  
 
Radus of Curvature of Gaussian waves.  

])(1[)( 20

z
z

zzR +=          (22) 

 
For z=0,  R=∞ .   For z=∞ , R= ∞. The minimum of R(z) occurs at z=± z0.  The value is   
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Thus the wavefront is most curved at the Rayleigh range. 
 

 
To draw a diagram of wave fronts at various 
locations. 
 
 
 
 
 
 
 
 
 
 
 

 

Curvature of Gaussian beams

z0

2z0

R(z)
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A Review of the ABCD Law of the ray optics  (Chapter 1) 
 
In geometric optics, an arbitrary optical system can be represented by a 2x2 matrix, which 
transforms the position and angles of the incident beam into the position and angle of the 
outgoing beam. 
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                     To show a diagram 
 
 Common optical systems: 
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Thin lens of focal length f  
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Dielectric interface   
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Spehrical mirror of radius (concave)  
�
�

�

�

�
�

�

�
−

1
2

01

R
     (27) 

 
 

A medium with quadratic index profile  
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where the index of refraction varies with the lateral position  according to 
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Examples  of application of the ABCD law to ray optics. 

1. A ray of  a given position and slope propagating in free space. 
2. Snell’s law 
3. Parallel rays incident on converging lens. 
4. Special case for a ray parallel to the axis entering a quarter-pitch, half-pitch 

graded-index lens.  
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The ABCD law for the beam optics 
The q parameter of the transmitted  Gaussian beam through an  optics is related to that of the 
incident beam by the following relations:  
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Where q1 is the incident and q2 is the transmitted and A,B, C and D are the elements of the 
ABCD matrix. 
 
Example: 
1. A Gaussian beam has a waist of W0 . Find the  q-parameter, beam size and radius of curvature 

after propagating through a uniform medium of distance z. 
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From the ABCD law              
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q(z) is also defined through Eq. (13)  
By equating the real and imaginary parts of the Eqs (13) and (30), the result should be the 
same as Eqs.(15) and (16) 

 
2. A lens of focal length f is placed at the waist of a Gaussian beam of waist W0.   Find the 

location and size of the minimum spot of the transmitted beam. 

 

f

q(0) q1
q2

W0 l
W2

 
Approach:  the beam is transformed by the lens followed by the propagation in free-space of 
distance l after the lens.  The q-value may be calculated for each step. 
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The initial q value 2
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The q-value after the lens, using the ABCD rule, is 
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The q-value at the waist after propagating through a distance l is lqq += 12 . 
 

Set 2
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λ−=  .  By requiring that ∞=2R  and equating the real and imaginary parts 

of the equation,  the location of the new waist l  can be found to be  
 

2

0

)(1
z
f

f
l

+
=             (31) 

where z0 is the Rayleigh range for the incident beam.  
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The new beam waist is given by 
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Discussions: 
• For a incident beam of planar wavefront with large waist, the minimum spot 

occurs at the focal length.  (From Eq. (31)) 
• What is the minimum focused spot size using a length of focal length f? 
• How does the spot size of the focused beam depend of the size of the incident 

beam? 
 

 
Higher-order Gaussian beam 
  
If we do not impose the condition of azimuthal invariance in the Helmholtz equation , then 
the solutions can be expressed in the form of Hermite polynomials. 
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Where Hl  and  Hm are the Hermite polynomial of order l and m. The rest of the parameters 
are defined the same as for the fundamental Gaussian mode. 
 
The phase shift along the axis is the larger.  The transverse variation follows the Gaussian 
envelop function with a modulation defined by Hl  and  Hm.   
 
 

 



 11 

 
 

HOMEWORK  
 

1. Starting from Maxwell equations, prove that the electric and magnetic fields in free space 
follows the wave equation Eq.(1). List all the assumptions and how the speed of the light 
is related to vacuum susceptibility and permeability. The derivation can be found in any 
book in the Chapter of electromagnetic waves. You need to do the derivation once. 

 
2. A lens of focal length  f  is placed at the waist of a Gaussian beam of waist W0.  Find the 

location and size of the minimum spot of the transmitted beam. Determine the minimum 
spot size of the focused beam. 

 
3. Problem 1.4.2:  

Ray-Transfer Matrix of a GRIN Plate. Determine the ray-transfer matrix of a SELFOC 

plate [i.e., a graded-index material with parabolic refractive index )
2
1

1()( 22
0 ynyn α−≈ ]  

of width d. 
Problem 1.4.3: 
The GRIN Plate as a Periodic System. Consider the trajectories of paraxial rays inside 
a SELFOC plate normal to the z axis. This system may be regarded as a periodic system 
made of a sequence of identical continuous plates of thickness d each. Using the result of 
Problem 1.4.2, determine the stability condition of the ray trajectory. Is this condition 
dependent on the choice of d?                                      
    

4. Problem 3.1.1: 
Beam Parameters. The light from a Nd:YAG laser at wavelength 1.06 µ m is at a 
Gaussian beam of 1-W optical power and beam divergence 12 0 =θ  mrad. Determine the 
beam waist radius, the depth of focus, the maximum intensity, and the intensity on the 
beam axis at a distance 100=z cm from the beam waist. 
 
Problem 3.1.2: 
Beam Identification by Two Widths. A Gaussian beam of wavelength 

mµλ 6.100 = (emitted by a 2CO laser)has widths mmW 699.11 =  and mmW 38.32 = at two 
points separated by a distance cmd 10= . Determine the location of the waist and the 
waist radius. 
 
Problem 3.2.1: 
Beam Focusing. An argon-ion laser produces a Gaussian beam of 
wavelength nm488=λ and waist radius mmW 5.00 = . Design a single-lens optical system 
for focusing the light to a spot of diameter 100 mµ .What is the shortest focal-length lens 
that may be used? 
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      5.   Problem3.2.4: 
Transmission of a Gaussian Beam Through a Graded-Index Slab. The ABCD  matrix 
of a SELFOC graded-index slab with quadratic refractive index (see Sec.1.3B) 

)
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: dA αcos= , dB αα sin)/1(= , dC αα sin−= , dD αcos= for paraxial rays along the z 
direction. A Gaussian beam of wavelength 0λ ,waist radius 0W in free space, and axis in the 
z direction enters the slab at its waist. Use the ABCD law to determine an expression for 
the beam width in the y direction as a function of d. Sketch the shape of the beam as it 
travels through the medium. 

    
 

6.  AGaussian beam of wavelength λ is incident on a lens placed at lz = as shown.                       
       Calculate the lens focal length f so that the output beam has a waist at the front  
       surface of the sample  crystal. Show that(given l and L) up to two solutions may 
       exist. Sketch the beam behavior for each of these solutions. 
 
 

 
 


