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2  Waves in dielectric media and waveguides 
Section 5.2  
In this lecture, we will consider the properties  of waves whose propagation is governed by 
both the diffraction and confinement processes.   The waveguides are a result of the balance 
between the the diffraction and confinement. 
 
The concept of wave propagation as a re-emission process. 
 

Waves in dielectric media

E P= εεεε0 χχχχ (r, t, θθθθ, E) E

Waveguiding: χχχχ (r  )

Dispersive:   χχχχ ( t  )   or  χχχχ (νννν)

Nonlinear: χχχχ ( E)
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Wave equation in linear non-dispersive homogenous and isotropic media 
 
Non-dispersive media--  here it  means  “ instantaneous”. 
 
The vector of the polarization density  is instantaneously following that of the electric field. 
 

EP χε 0= ,               (1) 
 
Where χ is the electric susceptibility which does not depends on r, t or E.   From the relation  

PED += 0ε  between the electric displacement and polarization, and D= εE 
The dielectric constant is given by  
 

)1(0 χεε +=          (2) 
 
Maxwell’s equations are 
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Which lead to the same form of  wave equation as in free space except that the speed of light 
is redefined.  
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Next, we will work out a more general approach to allow P to depend on E. 
 
Waves in a Nonlinear Medium 

What is a nonlinear medium?—   P is a function of E 
 
With the nonlinear dependency, P cannot be factored into E.  
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It follows that 
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 where P is a nonlinear function of E . P can be at a different frequency from that of E.    This 
equation will be used extensively later.  The polarization vector becomes the source which 
plays a major role in nonlinear frequency generation, laser, and waveguide coupling to be 
discussed later.  
 
Examples.   The P may contain multiple powers of E. As a result, new frequencies may be 
generated. 
 
Monochromatic electromagnetic field in a medium 
 
When both E and H are harmonic waves of frequency ω, Maxwell’s equations for a non-
dispersive medium become 
 

0
0

=•∇
=•∇

−=×∇
=×∇

B

D

BjE

DjB

ω
ω

 

Where PED += 0ε  and HB 0µ= .  These relations will lead to the Helmholtz equation 

022 =+∇ UkU           (8) 
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where k the wave number in the medium   

nkkk 00 == ε  
 
When the index of refraction is a function of position, then  
 

 
 
 

 
 
Guided modes in a symmetric one-dimensional waveguide 
 
To give a physical pictures of waveguide and waveguide modes using the concepts of   waves 
bouncing between two parallel interfaces: 
 
 

One-dimensional slab waveguide
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For a wave propagating in the z-direction, the solution of the Helmholtz equation (8)  may be 
simplified by assuming that the electric field is a harmonic wave given by 

zjexErE β)()( =   
 
The Helmholtz equation can be separately listed for each region. 
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The field at the boundary must satisfy the boundary condition at the interfaces., namely the 
tangential component of E and H to be continuous across the boundary.    
 
Consider the TE mode electric field parallel to the plane, a symmetric solution of the 
following form 
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Where p and h satisfies the following relation 
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In order to have a guided mode, both   p and q must be real numbers so that the waves do not 
propagates in the x  direction,  the modal propagating constant satisfies the following relation: 

knkn 12 >> β          (14) 
The boundary conditions lead  to the following equation for the eigen value β. 
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The symmetric waveguide always has a solution.  Depending on the steps of the refractive 
indices, there can be more than one mode.  

 
From the figure for the two-mode situation, 
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The factor 2
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2 nn −  is also the numerical 

aperture of the waveguide. 
 
 
 
 
 
 
 
 

x

n(x)

a

n2
n1

The numerical aperture of waveguide

Core    n2

Cladding   n1

θc
θ

N.A.=sin θ



 6

The number of modes that can be supported by a waveguide is  
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For a silica  single mode fiber of core diameter 5 microns and  NA=0.1,. Find the index step.   
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Beam profiles 
 
From Eq. (13)  
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Internal field distribution 
 
The beam profiles of the guided modes can be understood as being the interference fringes of 
the two waves bouncing between the two interfaces. 
 
The lowest order mode has the smallest p value and no node.  The higher order mode has a 
larger p values and large number of nodes. 
 
Field in the cladding 
 
The field in the cladding decrease exponentially with increasing distance from the core. The 
larger q value, the faster the decay.   The propagation constant β is bound within the range  

knkn 12 >> β .    The lowest order mode has the largest value for q. The electric field is more 
confined in the core.  The higher-order mode have smaller values for  q and the electric field 
extends more into the cladding.   This may be counter intuition—why? 
 
Group velocity of guided modes 
 
The group velocity, the velocity of energy or wave packet that is detectable, is given by  
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We can express ω in terms of β  and  p in terms of  β tanθ .  
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Where θ is the oblique angle between p and β.  The lowest order mode has the smallest  θ.  
The group velocity is given by 
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Thus the group velocity of the higher-order modes with a larger θ  is larger.  
 
This counter intuition. Why?  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Waveguide with quadratic refractive index distribution 
 
Returning to Eq. (8) 
 

022 =+∇ UkU           (8) 
 
where k the wave number in the medium   

nkkk 00 == ε  
When the index of refraction is a function of position, then  
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The solutions are the eigen modes of the waveguide. If the wave propagates in the z-direction 
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Case I  ∆n= a real number 
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The electric field is  
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Wavefront is planar with a Gaussian distribution.  Beam waist at 1/e is proportional to the 
fourth root of ∆n. 
 
Case II  ∆n= a pure imaginary number  j∆ni (gain guide) 
 
It is customary to express the spatial variation in terms of the real and imaginary part of the 
refractive index. 
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The waveguide supported by the imaginary part of the refractive index is known as the gain-
guide.  The power distribution is also Gaussian.  The wavefront is a curved surface governed 
by 

 

.tan)
1

( 2

0
0

0
0 tconsx

n
n

kz
n
n

a
k ii =

∆
±

∆
±±

 



 10

 
The wavefront is a cylindrical surface. 
 
 
Problems: 
 
1.  For an optical fiber of core diameter 5 microns, estimate the difference in index refraction 
between the core and the cladding to support a single mode  for  λ=1-µm. How many modes 
can this waveguide support for λ=0.5 µm.? 
 

2..Prove that the numerical aperture, N.A, of a waveguide is given by  2
1

2
2 nn − . 

 
3. Find the  maximum disparity in group velocity of the different modes in a waveguide.  
Assuming that the lowest possible oblique angle is 0 and the maximum angle is determined by 
the total internal reflection between the core and cladding. 
 
4.  Two waves of wavelength λ and propagating in k1 and k2 directions overlap in space. The 
interference between the waves results in stationary fringes.   
 
Find the fringe spacing and the direction of the fringe lines in relation k1 and k2.  
Sketch the fringe lines.   
Discuss the limiting cases when k1 =   k2 and   k1 =- k2.. 
Try to use the relation for fringe spacing to explain the fringe spacing of  the double slit 
(Young’s) experiment. 
 
  

  


