Solutions for Problem Set \#3

1. Prove that the eigen value β_{c} and eigen vector \vec{a} for a system of N equally spaced identical waveguides with nearest neighbor coupling is given by (22) and (23).
2. Use the result of (1) to express the various eigen modes and eigen propagation constant $\beta+\beta_{c}$ for the 2-, 3-, and 4-element coupled waveguide, where β is the propagation constant of a single waveguide in the absence of coupling. Sketch the amplitude of the various modes

By assuming the following form for the eigen solution

$$
\vec{a}(z)=\vec{a} \exp \left[-j \beta_{c} z\right]
$$

The system of N coupled waveguides can be described by

$$
\left[\begin{array}{ccccccc}
\beta_{c} & 0 & 0 & 0 & & & \\
0 & \beta_{c} & 0 & 0 & 0 & & \\
0 & 0 & \beta_{c} & 0 & 0 & & \\
0 & 0 & 0 & \beta_{c} & & & \\
& 0 & & \beta_{c} & 0 & 0 & 0 \\
& & & 0 & \beta_{c} & 0 & 0 \\
& & & 0 & 0 & \beta_{c} & 0 \\
& & & 0 & 0 & \beta_{c}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\hline
\end{array}\right]=\left[\begin{array}{cccccccc}
0 & C & 0 & 0 & & & & \\
C & 0 & C & 0 & & 0 & & \\
0 & C & 0 & C & & & & \\
0 & 0 & C & 0 & & & & \\
& 0 & & & 0 & C & 0 & 0 \\
& & & C & 0 & C & 0 \\
& & & & 0 & C & 0 & C \\
& & & & 0 & 0 & C & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot
\end{array}\right]
$$

The eigen values are the solution of the determinant of the following equation:

$$
\operatorname{det}\left[\begin{array}{cccccccc}
\beta_{c} & C & 0 & 0 & & & & \\
C & \beta_{c} & C & 0 & & 0 & & \\
0 & C & \beta_{c} & C & & & & \\
0 & 0 & C & \beta_{c} & & & \\
& & & & \beta_{c} & C & 0 & 0 \\
& 0 & & & C & \beta_{c} & C & 0 \\
& & & & 0 & C & \beta_{c} & C \\
& & & & 0 & 0 & C & \beta_{c}
\end{array}\right]=0
$$

For a 2-element array,
$\beta_{c}= \pm C$
The amplitudes are $a_{1}= \pm a_{2}$ or or in the general format $\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{c}\sin \frac{m \pi}{3} \\ \sin \frac{2 m \pi}{3}\end{array}\right]$ where m is 1 or 2 .

In a three-element system, the solutions by solving the determinant are $\beta_{c}=c \cos \left(\frac{m \pi}{4}\right)$ where m is an integer: 12 , or 3
The amplitudes of the wave functions are
$\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{c}\sin \frac{m \pi}{4} \\ \sin \frac{2 m \pi}{4} \\ \sin \frac{3 m \pi}{4}\end{array}\right]$ where $\mathrm{m}=1,2$ and 3.

In a four element system, $\beta_{c}=\frac{ \pm 1 \pm \sqrt{5}}{2} C$ and can be expressed as $\cos \frac{m \pi}{5}$ where the m's are integers from 1 to 4 .

To prove that the general solution for the eigen values and functions, the governing equations are

$$
\begin{aligned}
-\beta_{c}^{m} a_{1}^{m} & =c a_{2}^{m} \\
-\beta_{c}^{m} a_{2}^{m} & =c a_{1}^{m}+c a_{3}^{m}
\end{aligned}
$$

-
-

$-\beta_{c}^{m} a_{i}^{m}=c a_{i-1}^{m}+c a_{i+1}^{m}$
-
-
It can be proved that
$\beta_{c}^{m}=-2 c \cos \left(\frac{m \pi}{N+1}\right)$ and $a_{i}^{m}=\sin \left(\frac{i m \pi}{N+!}\right)$ satisfy all the equations linking i and $i+1$ and $i-1$.

I have not yet worked out a direct solution to the N x N determinant equation. Let me know if you have figured out how to do.

