
Solutions for Problem Set #3 
 

1. Prove that the eigen value βc  and eigen vector  
→
a  for  a system of  N equally spaced 

identical waveguides with nearest neighbor coupling is given by (22) and (23). 
2. Use the result of (1) to express the various eigen modes and eigen propagation 

constant β +βc     for the 2-, 3-, and 4-element coupled waveguide, where β is the 
propagation constant of a single waveguide in the absence of coupling.   Sketch the 
amplitude of the various modes 

 
By assuming  the following form for the eigen solution   
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The system of N coupled waveguides can be described by  

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The eigen values are the solution of the determinant of the following equation: 
 
 
 
 

 
 
 
 
 

The eigen values are the solutions of the determinant equation: 
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For a 2-element array,  

Cc ±=β  
The amplitudes are 21 aa ±= or  or in the general format 
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where m is 1 or 2. 

 
 
 

 
In a three-element system, the solutions by solving the determinant are 
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cc = where m is an integer: 1 2, or 3 

The amplitudes of the wave functions are 
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  where m=1,2 and 3. 

 
 



 
 
 
In a four element system, 

Cc 2
51±±=β  and can be expressed as 
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where the m’s are integers from 1 to 4. 

 
To prove that the general solution for the eigen values and functions, the governing 
equations are 
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  where i is an integer ranging from 1 to N. 

It can be proved that  
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satisfy all the equations linking i and i+1 and 

i-1. 
 
I have not yet worked out a direct solution to the N x N determinant equation. Let me 
know if you have figured out how to do.  


