
4   Fourier optics 

Fourier relations in Optics
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Review of Fourier theorem 
 
A complex function  f(t) may be decomposed as a superposition integral of harmonic function 
of all frequencies and complex amplitude 
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The component with frequency ν has a complex amplitude F(ν), given by 
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 Selected function and their Fourier transforms, between t and ν, and between x and θ. 
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Huygens’ principle- 
 

Huygens’ Principle
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Applications of Eq. (5)  
 
Single- slit diffraction 
 
When a  single slit of width  a illuminated by radiation of wavelength λ, the angular 
distribution of  electric field observed at infinity is  
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Single slit diffraction
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-Pulse width-bandwidth relation 
 
Application of  Equation  (8)  to pulse train and gratings 
 
-Grating for deflecting 
 A grating converts plane waves propagating in the z-direction into plane waves propagating 
at an angle following the grating equation.  
 
-Spatial harmonics and  angles of propagation (Section 4.2) 
-  
The spatial distribution of arbitrary function can be expanded into spatial harmonics of 
various frequencies.  In the far field, which is sufficiently far away so that the plane waves are 
separated, a single plane wave contributed to the amplitude at a far away plane. This is the 
Fraunhofer approximation 
. 
Thus optics can be used to computer the Fourier transform of a spatial function.  The spatial 
function can be program and generated using a liquid crystal light modulator. 
 
-Graded grating for focusing 
 
-Fresnel lens 
 
 
Fourier transform between two focal planes of a lens 
 
First we need to work out some basic procedures concerning propagation in free space. 
 
Transfer function in free space for a spatial harmonics 
Consider a two-dimensional complex electric field at z=0 given by  
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where the ν’s are the spatial frequencies in the x and y directions.  The spatial frequencies are 
the inverse of the periods. 
 
When this pattern is emitting at wavelength λ, a plane wave of the following form is 
generated: 
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This can be proven by considering the diffraction of a sinusoidal grating illuminated by a 
plane wave of wavelength λ. 
 
Thus by decomposing a spatial distribution of electric field into spatial harmonics, each 
component can be treated separately. 
 
Define a transfer function in free space for the spatial harmonics of spatial frequency νx and 
νy to travel from z=0 to z=d as   
 

dj

yx

yx

eH
2/122

2
)

1
(2

),(
νν

λ
π

νν
−−−

=        (14) 

This is the multiplication factor to a sinusoidal spatial pattern of spatial frequency νx and νy.  

The redirecting of an incident plane wave into another direction by a periodic structure can be    
illustrated in the following figure.  If the spatial periodic structure is stationary, the outgoing 
wave number is the same as the incident wave number.  
 
A simple rule to remember: 
 
 
When a plane wave of wave vector k1 is incident on a spatial harmonics, such as a grating 
with spacing d extending in the x-direction, the wave vector, k2 of the outgoing wave can be 
related to k1 by the following relation. 
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Where N is an integer. 
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The H factor can be simplified in the limit of small spatial period compared to the 
wavelength. (1/ν <<λ).  ( What is the meaning ?) 
 
Using the Fresnel approximation (small angle 
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Thus (14) becomes 
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Thus the phase change as a function of propagation distance d in free space result in a phase 
change that is quadratic function of spatial frequency ν’s.    



 
The effect of lenses 
 
A converging lens transforms a plane wave into a  spherical wave which converges toward a 
point at one focal length away.     

Converging lens

f

 
A lens is to introduce a quadratic phase shift to the wavefront given by 
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How to prove by considering the surfaces of constant phase. ?. 
 
Examples for the application of the transfer functions 
 
 
 
Fourier transform using a lens 
 
An intuitive picture will be provided.    
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First the function f(x,y) at z=0 can be expanded using the spatial harmonics: 
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The integrand is then propagate in free space to plane A, using (15).  Then after the lens to 
plane B using (16) 
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The waveform further propagates from plane B to the focal plane. 
 
Results: 
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A lens has the effect of bring the far-field angular distribution into the focal plane. 
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Holography 
 
 Interference fringes caused by two plane waves  
 



Two plane waves whose wave vector subtends an angle  θ  create interference fringe lines in 
the direction bisecting the angle and with a separation 
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Example:  Counter-propagating beams create standing waves of spacing λ/2.  
 

Figure 1 
 
 
 
 
 
 
 
 
 
 
  
 
Thin planar holography 
Show that a grating with the spacing 
of the fringes, Eq. (19)  is illuminated  by wave  k1,  one of the diffracted waves is in the 
direction of k2.    
 

 
Figure 2 

 
Actually, there may be two 
diffractive waves, 
corresponding to different grating 
orders. 
 
 
 
Bragg condition  
 
Path difference of waves from 
successive layers is  
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Maximum reflection occurs when ∆ equals the wavelength.   
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The Bragg reflectors are widely used as mirrors in laser systems and optical fibers.  Typically, 
alternating layers of higher and lower indices of refraction are used. 
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 Volume holography 
 
 
Example of image reconstruction of a point illuminated by a plane wave. 
 
Recording 

 
Reading 



 
Consider am arbitrary object waves at (x,y,z) to be  )(),( zkxkj zxezxE +−  making an local angle θ 
at (x,y,z).  Assuming that the reference wave is a plane wave  ikz

r eE  in the z-direction. 
 
The superposition of the two result in interference fringes pattern. At z=0, the intensity is 
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If the fringe pattern is recorded on a transparency and illuminated by plane waves propagating 
in the z-direction,  the diffractive waves are 
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The first the last terms are the transmitted reference waves, and the filtered intensity. The 
second term is the reconstructed the object waves and the third term is the conjugation of the 
object waves. Often the reconstructed and the conjugate waves form the image and virtual 
image. 
. 
Problems: 
 
 

1. Prove Eqs. (5)-(8).  You don’t need to turn in the answer, but must prove it once. 
2. Prove  (19). 
3. The beam divergence at infinity of a plane wave passing through a single slit of width 

is  known to be  
D
λθ =  where the angle is measured from the maximum intensity at 

the center to the first intensity minimum on either side, and D is the slit width for D>> 
λ. 
Use the transfer function approach to obtain the same relation. 

(a) First, express F(x), the x-dependency of the wave, after the slit using Fourier 
transform.  

(b) Apply the transfer function (15). 



(c) Express the resultant function as a function of  
z
x=θ   for z approaching 

infinity, 
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4. Find all possible directions of the diffracted beams when the planar grating, shown in 
Figure 2, is illuminated at an angle θ/2 from the normal.   The grating is created by the 
interference of two waves shown in Figure 1. 

5. Prove the Bragg condition Eq(20). 
6. Design a holographic converging lens of focal length f for wavelength λ. Specify the 

fringe spacing as a function of position in the plane of the hologram. 
 

  
 
 


