
5 Waves in dispersive media 
 

Bound electron model of dielectric constant/index of refraction 
 
The behavior of electrons when driven by an electromagnetic radiation can be understood 
using the well-known equation of forced oscillator, in terms of the mass, oscillation 
frequency, and damping coefficient: 
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where x is the displacement vector, 2/1

0 )/( mκω = and σ is a damping constant. 
The polarization density  of the medium is the sum of the dipole moments of N-atoms per unit 
volume so that NexP = . Eq (1) becomes 
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where 2
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0 / ωεχ mNe=  is  the susceptibility. 

 
For a monochromatic electric field of frequency ω,     
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where the bandwidth  
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=∆  .  The susceptibility is a complex number.  The meaning of 

damping? 
 
The real and imaginary parts are  
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If the atoms are placed in a medium of 
index of refraction n0 , 
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The imaginary part of the susceptibility can lead to gain or  absorption loss. 
 
Pulse propagation in dispersive medium 
 
Consider a plane-wave pulse U(z,t)  propagating in the z-direction, the  propagation of the 
pulse may be analyzed by treating the traveling of the individual frequency components. 
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where β 0 = β(ν0 ) is the central wavenumber and A is the complex envelop of the pulse which 
is slow-varying. This is a wave packet of central frequency ν0.   The propagation can be 
treated by considering the frequency components of the wave at the initial point z=0. 
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and amplitude for the frequency  f is given by 
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Here it is assumed that   f   is the frequency deviation from the central frequency and f<<ν0. 
The “frozen” wave at z=0 in (7) then is 
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By expanding β(ν) surrounding ν0 , the wave then travel to z according to  
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where the group velocity 

ν
β
π

d
d

Vg

2=  and dispersion coefficient 2

2

2
1

ν
β

π d
d

D = .  (11) 

 
Case I Dispersion free medium 
For D=0, (10) becomes 
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The leads to an envelop function   ),( z
v
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− which is centered at tgν   to without changing 

shape. 
 
 Assuming that the initial pulse shape A(0,t) has a Gaussian profile of width τ 0:  
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where jDz+= 2

0
2' ττ .   After the integration, the electric field has the following form 
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The integration of Eq  (12) is simply Eq (8), shifted to a new location tz gν= and with a 

Gaussian shape of width τ  , which is a complex number. 
 



 
 
Maintaining pulse shape in a dispersive medium by frequency chirping 
 
In Eq. (12), if the phase of the original Gaussian pulse is phase modulated during the pulse by 
a factor )exp( 2Dzfjπ+  to cancel the broadening effect, the pulse duration may be maintained 
while propagating in a dispersive mediu--optical soliton 
 
 
Problem  5.5-2 
 
Problem 5.6-1 
 
Pulse broadening in optical fibers  5.6-3 


