5 Waves in dispersive media

Bound electron model of dielectric constant/index of refraction

The behavior of electrons when driven by an electromagnetic radiation can be understood
using the well-known equation of forced oscillator, in terms of the mass, oscillation
frequency, and damping coefficient:
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where x is the displacement vector, @, = (x/m) '~ and ois a damping constant.

The polarization density of the medium is the sum of the dipole moments of N-atoms per unit
volume so that P = Nex . Eq (1) becomes
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where g, =e’N/me,w; is the susceptibility.

For a monochromatic electric field of frequency m,
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where the bandwidth Av = 21 . The susceptibility is a complex number. The meaning of
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The imaginary part of the susceptibility can lead to gain or absorption loss.
Pulse propagation in dispersive medium

Consider a plane-wave pulse U(zt) propagating in the z-direction, the propagation of the
pulse may be analyzed by treating the traveling of the individual frequency components.

U(z,1) = A(z, 1) exp(j(2avyt - f,2) (N
where o= B(vo) is the central wavenumber and A is the complex envelop of the pulse which

is slow-varying. This is a wave packet of central frequency vy, The propagation can be
treated by considering the frequency components of the wave at the initial point z=0.

A0, = [ a(0, fyexp(j2af)df ®)
and amplitude for the frequency fis given by

a(0, f) = [ A, 1yexp(~j2f)df

Here it is assumed that f is the frequency deviation from the central frequency and f<<v,.
The “frozen” wave at z=0 in (7) then is

UO.1) = a(0, f)exp(j2aft)expl+ 22, 1df ©)
By expanding A v) surrounding V; , the wave then travel to z according to

U(z,t) = jz a(0, f)exp(j27ft) expl—jBW, + f)zlxexpl j2av, 1df
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where the group velocity V, = T and dispersion coefficient D = rdv? (11)
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Case I Dispersion free medium
For D=0, (10) becomes
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The leads to an envelop function A(r ——, z) which is centered at v ¢ to without changing
v
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shape.

Assuming that the initial pulse shape A(0,t) has a Gaussian profile of width 7:
2

A(0,1) = A, exp(-T-—)
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Substituting a(0, ) = exp[—7( ffo)z] into (10)

Utzn) = [ expl-m(f2,)" 1exp(2l(v, + ) exp(=j27f ) exp(=jaDef ) exp(= B,
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where 7'° = 1'02 + jDz. After the integration, the electric field has the following form
(t—z/v,)?
U (z,1)] o< exp(-7——*— (13)
T
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where 7 =72+ 2% (14)
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The integration of Eq (12) is simply Eq (8), shifted to a new location z =Vt and with a

Gaussian shape of width 7 , which is a complex number.
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Maintaining pulse shape in a dispersive medium by frequency chirping

In Eq. (12), if the phase of the original Gaussian pulse is phase modulated during the pulse by
a factor exp(+ jzDzf*) to cancel the broadening effect, the pulse duration may be maintained
while propagating in a dispersive mediu--optical soliton

Problem 5.5-2

Problem 5.6-1

Pulse broadening in optical fibers 5.6-3



