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8  Laser (oscillators)   
Chapter 14 

 

An analogy:  an electronic oscillator   
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Condition for laser oscillations: 

 Amplification > loss  

 Total phase shift in a round trip =2N 

 

 

 

An oscillator comprises of 

 An amplifier   

 A feedback mechanism 

 A frequency selection mechanism 

 An output coupling scheme 

 

Pump

Output mirror

 
Theory of laser oscillation: 

(A) Amplification: discussed in Lecture 7. 

(B) Optical resonator: 
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There are various loss mechanisms in a resonator:  mirror loss, distributed losses due to 

scattering and unintentional absorption, etc.  These losses, either distributed or localized, can 

be represented using loss coefficients as if they were all distributed in the entire resonator.. 

2

2

1

1

21

1
ln

2

1

1
ln

2

1

Rd

Rd

m

m

mmsr













.        (1) 

The total mirror loss of the resonator is  
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Define the   photon lifetime in the resonator as 
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Find the photon lifetime of a  resonator of length 1 cm, with reflectivity 90% and 100%.    

 pscm pr 63005.0 1              

The gain medium must be able to produce a gain of 5.1 % per 1 cm to overcome the loss. 

 

In certain “high gain” lasers such as semiconductor lasers,  the mirror reflectivities are 30% 

and 30%, the length is 500 microns.    pscm pr 3.124 1       The medium must 

amplify the signal by 2.6x10
10

 in 1 cm. 

 

(C) Resonance frequency:  standing waves of the resonator. 
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where q is an integer, d is the length of the resonator, assuming that the medium fill the 

resonator, and   is the phase shift per unit length as discussed in Lecture 7.   From (36) of 

Lecture 7,  
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The condition of laser frequency can be obtained from (4) and (5):   
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where q(c/2d) is the “cold”  resonance frequency of the resonator when no gain medium is 

present. 

 

If the effect of the gain medium on phase shift is small, the laser frequency is simply the 

resonance frequency of the resonator. 

 



 3 

Frequency pulling toward line center 
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(D) Condition for laser oscillation: The “small signal gain”  > loss 
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Characteristics of laser output  

Characteristics of laser output 
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The change of slope from below to above the threshold is only due to the higher 

directionality of the laser beam. 
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Wavelength

Approaching the 

threshold

Compressed scale

Spectrum envelop of a laser

 
From Lecture 7, the gain coefficient of an amplifying medium decreases when the flux of 

the stimulated emission increases: 
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where the gain coefficient is frequency-dependent, 0  is the small-signal gain coefficient at 

the line center, and s  is the saturation  photon flux.  The decrease in the small-signal gain as 

the stimulated emission increases is known as gain saturation.  The threshold is reached when 

the gain equals the loss of the resonator:  
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At this point, the oscillation can be sustained.  The flux of the stimulated emission can be 

expressed as a function of the gain coefficient: 
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Since the gain coefficient is linearly dependent on the inversion density N=N2-N1, 

)()( 00  N  where N0 is the small signal inversion density.  The resonator loss at the 

threshold can be related to the inversion density at the threshold through )( tr N .   

 

The flux of the stimulated emission can then be expressed using the inversion density by 
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The onset of the stimulated emission depletes the inversion density and keeps it at the 

same level at Nt  above the threshold.regardless of the pumping rate. 
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Dynamics and transient effects   

 

The dynamics of lasers is a result of the interplay between the photon number density  

c
n


  and the inversion density N. The rate of change of photon number is governed by 

the rate of pumping and depletion: 
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where the photon lifetime is related to the loss of the resonator through 
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Spectral narrowing of lasing spectrum 

 

Before studying the dynamics further, we can use this equation to explain the effect of 

spectral narrowing.  It is useful to add an empirical term to represent the contribution of 

the spontaneous emission: 
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where , the spontaneous emission factor, is the fraction of the spontaneous emission that 

propagates along the stimulated emission.. The value of  is on the order of 10
-3

 to 10
-6

.   

 

At steady state, the photon density can be expressed as 
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When N approached  
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)(/  , the threshold is reached and the photon 

number density can approach infinity.  Thus technically, the threshold condition can never 

be reached.  If the gain profile  has a bell shaped distribution, the photon number density 

is inversely proportional to the deficit of gain from the threshold.  The evolution of lasing 

spectrum at various levels of inversion density is illustrated in the following figure. 
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Dynamics of lasers 

 

The rate equations for the photon number density, n, and inversion density, N, neglecting 

the spontaneous emission,  are 
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where R is the rate of pumping to the excited state. We also assumed that, in a four level 

system,  the lower level is nearly unpopulated and thus the decay of the inversion density 

due to the  spontaneous emission can be approximated by the decay of the excited state 

only.  Define a parameter )(cB  . Then  (11) can be written as 
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 Above the threshold, the steady state solutions for the inversion density and photon 

number density in (12) are 
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At the threshold, the photon density number is zero and the pumping rate, The pumping 

rate at threshold, from (13), is found to be 
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The pumping rate can be normalized to the threshold pumping rate by defining a 

ratio
thR

R
r  .  The photon density number in (13) can expressed as 
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Thus the steady-state photon density number in linearly proportional to the pumping rate 

for  normalized pumping rate r>1. 
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We are interested in the response of the photon density when a small deviation from 

equilibrium occurs. For small fluctuations in the photon number, , )(tn  and inversion 

density, ),(tN   let  
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It can be proved that, using the results from (13) to (18), )(tn  and ),(tN  are coupled 

through the following first order differential equations: 

NRB
n

dt

tdN

NBR
dt

nd

p

p

s

p
















)(

)
1

(

        (20) 

 

These two equations lead to the equation for damped harmonic oscillator.  
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Thus small fluctuations of the photon density number undergo  damped oscillations, called 

the relaxation oscillation.  The frequency of the oscillator is given by 
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For lasers whose excited state lifetime is much longer than the photon lifetime, the second 

term in the root can be neglected to arrive at the approximation in (22). 

 

Comparison of oscillation frequencies in various type of lasers: 
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Comparison of relaxation oscillation frequencies
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MHzrsns rsp  1100:,100: 

GHzrnsps rsp 1011:,10: 

Semiconductor lasers

 
How about large amplitude fluctuations? 

Large amplitude fluctuations
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Large amplitude fluctuations
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Gain switching 
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Q-switching
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Modulation of lasers  

 

Consider a laser driven by a small sinusoidal signal.  The response of the photon density 

number follows the following equation for forced oscillators: 
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If  the  photon number density is be expressed as tjenn  0 , then the response of the 

laser to the modulation is 
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The bandwidth of the modulation in response to the external signal is determined by the 

pumping rate and the lifetime of the excited state. 

 

What is the implication? 

 

 

 


