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Three-Dimensional Radiative Transfer
Tomography for Turbid Media

W. Cai, M. Xu, and R. R. Alfano

Abstract—The photon distribution, as a function of position, ~of the diffusion equation, which is the lowest approximation
angle, and time, is computed using the analytical cumulant solution of the radiative transfer equation (RTE) [1]-[5]. The forward
of the Boltzmann radiative transfer equation (RTE). A linear for- models based on the diffusion approximation (DA) give a large

ward model for light propagation in turbid media for three-dimen- h he di éb | and .
sional (3-D) optical tomography is formed based on this solution. error when the distance between a voxel and a source Is

The model can be used with time resolved, continuous wave (CW), Small. Furthermore, the photon distribution still maintains a
and frequency-domain measurements in parallel geometries. This strong anisotropy in a deeper region away from a source, which
cumulant forward model (CFM) is more accurate than that based || be shown later in this paper. Unfortunately, contributions
on the diffusion approximation of RTE. An inverse algorithm that ¢, ear surface voxels to measured signals are often larger
incorporates this CFM is developed, based on a fast 3-D hybrid- oo .. .
dual-Fourier tomographic approach using multiple detectors and than contributions from the voxels deep inside the medium.
multiple sources in parallel geometries. The inverse algorithm can Inaccuracy of the DA-based forward model may lead to a
produce a 3-D image of a turbid medium with more than 20000 failure in image reconstruction, especially for small hidden
voxels in 1-2 min using a personal computer. A 3-D image recon- ghjects deep inside the medium. The total weight matrix should
structed from simulated data is presented. be inverted. The large elements in the matrix, which play a
Index Terms—Absorption and scattering, forward model, in- more important role in inversion, are evaluated incorrectly in
verse algorithm, optical tomography, photon migration, radiative  paA models. The shortcoming of DA is well recognized, but it
transfer equation (RTE). is still broadly applied due to the difficulty in directly solving
the radiative transfer equation. Hielscle¢ial. [6] and Vihunen
I. INTRODUCTION et al. [7] developed numerical solutions of RTE for optical

VER THE PAST decade, optical tomography has beetﬂrgograrilhy. h developed itical soluti f
investigated as a noninvasive imaging method that us, ecently, we have developed an analytical sofution o

nonionizing near-infrared (NIR) light to obtain images of thg%if bas‘?t‘;'] on cg_rpulanthexpafnsmln, m8 anglnlftlnlte _L:jmform
interior of the breast. Unlike X-ray, which is attenuated throque ium with an arbitrary phase function [ ] | .]' provides an
media by ionizing the electrons at inner-orbits of atoms N:'%Xpl'c't analytical expression fqr pho_ton _dlstr|bu_t|on function
light uses the vibrational overtones for different molecular co I—(r’ i’ 'IIL')h arsna fﬁnctloig ?lf pr?j':'homhdl'fre\';%?a Otfrl]'gl?t;l’ a?ri m
ponents in the structures of tumor. NIR light may be used {f ¢ ¢: ' € Mean position and the hail- at hait-maximu
create image based on the molecular change, which may be HM) h?'ght of the distribution are always exact. In th'TQ'
to improve sensitivity and specificity in the early diagnostic?apgg’ctr?be;:jne_l?rr]i];orcvvshr/ld Q;dilst;?js\?viﬁ Ti::: rceusrgkllzgt iglnut?fn
of breast cancer. Breast tissues scatter light strongly, and bﬁud ) y '

the direct shadow image of a tumor. A technique, known as jjous wave (CW), and frequency-domain data, which are much

verse image reconstruction, has been investigated to overcdﬂ%fe accurate than the DA models.

the problem of multiple scattering. Some obstacles in the dq- o_;)hbtalnFa 3'?_ |_ma|ge 0|r_1e ?eedsﬂt](_) mves_ugate the Inverse
velopment of optical tomography are inaccuracy of the corfi-20Mthms. or clinical appiications, NS Fequires an Inversion
tgchnlque, that is computationally fast, and stable in the

monly used diffusion forward model, and lack of a fast invers ¢ t noise. R t alaorithms t ve th
algorithm able to realize a three-dimensional (3-D) image ggresence of measurement noise. Recent aigorthms 1o Solve the

construction of a breast for clinical use inverse problem include Newton’s least-square-based methods
One critical issue is the forward model, which should cona-nd gradient-descent methods [1}-[5]. These approaches use

rectly simulate photon propagation in the medium. The modt iterative procedure, which requires a long computation

commonly used forward models were built based on soluti 'r??e to solve a 3-D INverse problem with large unknowns
the number of unknowns is the number of voxels). Further-

more, the iterative methods can not ensure that the result
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of detectors. This type of experimental setup acquires onlyWhen the phase function depends only on the scattering
a set of 2-D data using CW or frequency-modulated lighdngle, we can expand the phase function in Legendre polyno-
that is not enough for a 3-D image reconstruction. Recenthpials with constant coefficients

Schotland and Markel developed inverse inversion algorithms

using diffusion tomography [12]-[14] based on the analytical n_ 1 ’

form of the Green’s function of frequency-domain diffusive Pls. ) = ar Zl:asz [oos(s - )] 2)
waves, and point-like absorbers and scatterers. Data obtained

by multiple sources with multiple detectors in parallel slab Recently, we have developed a new approach to obtain an
geometry are used in these approaches. analytical solution of RTE, based on a cumulant expansion, in

A fast hybrid-dual-Fourier (HDF) algorithm, which uses mulan infinite uniform medium, with an arbitrary phase function
tiple sources and multiple detectors in parallel slab geomet®(s, s) [8], [9].
is described in this paper for reconstruction of a 3-D image of We briefly review the concept of “cumulant” in a one-di-
an inhomogeneous medium. This approach uses a general ¥#€nsional (1-D) case. Consider a random variahlevith a
translation invariance of the Green'’s function in a homogeneopsbability distribution functionf(z). Instead of usingf(z)
background slab medium, suitable for forward models basedtmndescribe the distribution, we define thgh moment of
solution of RTE, and various other forward models, in CW, frex, (z") = [ 2" f(z) dz, and correspondingly theth cumulant
quency-domain, and time-resolved measurements. This invefs®). defined byexp(>" 7 | (z™).(it)"/n!) = (exp(itz)) =
algorithm runs fast. It is shown that a 3-D image of a turbif",~ ,(z")(it)"/n!. The first cumulan{z). is the mean posi-
medium (for example, divided into 32 32 x 20 = 20480 tion of z. The second cumularit:?). represents the HWHM
voxels) can be reconstructed in 1-2 min using a personal confi-the distribution. The higher cumulants are related to the
puter. This algorithm can produce stable images in presenceletailed shape of the distribution. For examgie’) . describes
relatively strong noises. the skewness or asymmetry of the distribution, and).

The forward model and the inverse algorithm discussed @@scribes the “kurtosis” of the distribution, that is the extent to
the following can also be applied for image reconstruction inwthich it differs from the standard bell shape associated with the
cloudy environment for military use. normal distribution function. The cumulants, hence, describe

This paper is organized as follows. Section Il presents thie distribution in an intrinsic way by subtracting off the effects
analytical solution of RTE, based on a cumulant expansio®f, all lower order moments. In 3-D case, the first cumulant has
in an infinite uniform medium and shows the photon distributhree components, the second cumulant has six components,
tion function computed using the cumulant analytical solutiodnd so on.

Section Il describes the forward models based on the anaWe derived an explicit algebraic expression of spatial cumu-
lytical solution of RTE, considering the slab geometry, and lants at any angle and any time that is exact up to an arbitrarily
weak heterogeneity using a perturbative method. Section gh order [9]. This means the distribution functidiir, s, ¢)
describes the HDF inverse algorithm for a reconstruction 6&n be computed to any desired accuracy. At the second order,
a 3-D image of an inhomogeneous medium. The 3-D image= 2, an analytic, hence, useful explicit expression for dis-

using this algorithm is shown. A discussion is presented fibution functionI(r, s, ¢) is obtained [8]. This distribution is
Section V. Gaussian in position, which is accurate at later times, but only

provides the exact mean position and the exact HWHM at early
times. A weakness of the second order cumulant solution is that
IIl. ANALYTICAL CUMULANT SOLUTION OF RTE photons at the front edge of Gaussian distribution travel faster

The photon propagation in a medium is described by tffgan light speed, thus violate causality, though to a much less
photon distribution function/(r, s, ), as a function of time extentthan thatin the DA. _
t, position r, and directions. The mathematical equation Fig. 1compareg(r, s, t) obtained from the analytical cumu-

governing photon propagation is the well-known radiativi&nt solution and the Monte Carlo (MC) simulation. In order to
transfer equation reduce the statistical deviation to an acceptable levélegénts

are counted in the MC simulation. The figure shows that the
solid curve (the tenth-order cumulant solution) is located in the

OI(r, 8,t)/0t + cs- Vi I(1, 8,t) + pa(v) (1, 5, 1) middle of data obtained by the MC simulation. The solution for
CW case can be obtained by an integratior/ @f, s, ¢) over
= U P(s, s, r){I(r,s', t) — I(x, s,t)] ds’ X ) > X
ts(x) / (s, 8, D)L(r, &, 8) = I(r, 5, )] ds timet. Itis shown that even second order cumulant solution (the
+68(r —19)8(s —80)d(t — 0) (1) dotted curve) can provide an accurate CW solution, because this

solution ensures that the mean position and the HWHM of dis-
where the fundamental parameters are the scattering railsution are always exact.
ps(r) = cpos, the absorption rate,(r) = cpo,, and the  The plots in Fig. 1 indicate that a strong anisotropic angular
differential angular scattering ratg.(r)P(s, s’, r), where distribution still exists at ~ 61, (I;.- is the transport mean free
o, and o, are the absorption and scattering cross sectiopath) from the source. The DA is only valid when the angular
respectivelyp is density of scatterers, ards the speed of light distribution is nearly isotropic. The dominatevave distribu-
in the medium. In a uniform infinite medium, these parameteti®n N (r, t)/4r computed using the diffusion model (the thick
are position independent. dotted curve) has a large discrepancy with the MC result.
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Fig. 1. Distribution functionI(r, s, ¢t) in an infinite uniform scattering
medium as a function of time, using Henyey—Greenstein phase function
with ¢ = 0.9. The detector is located & = 6 I;,, = 60/, from the source
front along direction of incident light, and the direction is along the incident
direction. The solid curve is computed from approximation up to tenth order of

_ (I+1)(+2) E(2) n (l1-1) E(3)

20+3 ! 20—1 ¢
I+1)(+2 1
%El@l)] + Z EAIPI(2)(COSH)

cumulant; the dotted curve is computed from approximation up to the second 1

order of cumulant, the discrete dots are from the MC simulation; the curve of (1) (2)
thick dots is from the DAN (r, ¢)/4r. +03(29) [21 i 2l 3
The second-order analytical cumulant solution is given by [8] _ QI% EI(B) _ m Ez(ﬂ (8.2)
- +
E(s, sy, t) 1
I(r, s,t) = (4372 ([det B)I2 where ) corresponds tad\,,, and () corresponds ta\,,,.
1 1
exp [—1 (Boalr =r)alr =) @ Aw=2 3 5 AP (cos6) sin(24) [—1 B
where I o Y o) _ (4)
Tt Ty b 21+3E } ®3)
F(S7 S0» t)
1 20-1)
20 + Ape =S = 4,PM (cos b EM
= exp(—flq )Z 1 exp(—git) Pi[cos(s - so)] Zz: g (cos ) cos(¢) 20 -1
l

- —— E
24+3 ¢ to_1t 204+ 3!

, 2042 py 1 pey, 1 E(4>}
exp(—git) _ Yim($) Vi (s0)-

4
@ A,. is obtained by replacingos¢ in (8.4) by sin¢. In

(8.4)

In(4), g = pall — ar/(20 + )], Yim(6, ¢) = (=1)™[(1 = (B.1)~(8.4)E " are given by
)'/(z+m)']1/2P<m>(cosa) exp(im), whereP™ (cos §) is O 01
the associated Legendre function, afgl (s) are spherical har- =g = g1-2) = flor = 91-01/(91-1 = g1-2)  (9.1)
monics normalized tdr /(2] + 1). E® — _ _ _ 9.2
In (3), the mean position of the distribution (first cumulant), ~ ' Floe=g142) = For = )l (911 = g142) - (9:2)
when the source is locatedgt = 0 and the incident direction El(3) =1f(g1 —g1—1) = t]/ (91 — 91-1) (9.3)
is alongz, is given by @
E =[f(g — gi41) — 1]/(91 — g141)- (9.4)

ri(s, t) =G Z A Py(cosb)
1

A0+ D) (o = gi41) + L (90 = gi-1)]
ri(s, t) =G Z AlPl(l)(cos 6)
1

Fig. 2(a) and (b) shows the light distribution as a function of
time at different receiving angles in an infinite uniform medium,
computed by the second cumulant solution, where detector is
located, separately, at5 [Fig. 2(a)] and 13;,. [Fig. 2(b)] from
the source in the incident direction of the source. Fig. 2 shows
the existence of the strong anisotropy of the light distribution at

(5.1)

~cos p[f (g1 — gi—1) — f(g1 — gi41)] (5.2)



192 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 9, NO. 2, MARCH/APRIL 2003

25e-05 A R A with the mean position
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g BT The corresponding time-dependent diffusion coefficients are
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g 15605 110% - c 1 391 — g2
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@ 3t Lot 9i(91— g2)
£ ve05f 2
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109 o {4 ()
3t Loy 9i(g1 — g2) ‘
(@
3.56-07 -—— 1= eXP(—gzt)]} : (13)
g2(91 — 92)
3e-07 1 As shown in (11)—(13), the mean position of the distribution
is moving, and the diffusion coefficients are time dependent. At
S 25807 | " )
9 t — 0, the mean position of the photon density moves along
2607 | z direction with speed, and the diffusion coefficients tend to
% zero, this result presents a clear picture of near ballistic mo-
S 15607 | tion. As time increases, the mean position motion slows down,
g and the diffusion coefficients increase from zero. This stage of
= 1e07 ¢ photon migration is often called a snakelike mode. At long time,
50.08 | (10) tends to the center-moved/) diffusion model with the
& diffusion coefficientl;,. /3.
o 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 18002000 I1l. FORWARD MODEL BASED ON THE
t(ps) CUMULANT SOLUTION OF RTE
() The linear forward models for scattering media are built in

Fig. 2. Light distribution in an infinite uniform medium as a function of timefollowing three steps: ]_) computation ofa background Green’s

at different received angle, using second cumulant solution of radiative translfﬁvhction in an infinite uniform medium: 2) extension of this

equation, where detector is located, separately, at 10 [Fig. 2(a)] and 30 mm , . .
[Fig. 2(b)] from the source in the incident direction. The parameters for thigreen’s function to slab geometry; and 3) computation of the

calculation t;arelwfz 2 Imm,la = Sgo mm, _tuedpha;te function is computedweight function using a perturbative method. These steps have

using Mie theory for polystyrene spheres with diameter 1.11 xm in water ; : APH :

and the wavelength of laser sourde= 625 nm, which gives the g-factor been apphed n bU|Id|ng the linear forward mOde_ls under DA
[2]. We use these steps as well, but our approach is based on the

g = 0.926.
cumulant solution of RTE, rather than the solution of the diffu-

51, from the source and the modest anisotropy at a distanceSin equation. _ _
151,.. These types of distributions have been demonstrated by/Ve use the second-order cumulant solution for computing a

time-resolved experiments [15]. background Green’s function in an infinite uniform medium,
One advantage of using the above analytical solution of RT¥NCe it is easy to use the explicit expressions in (3)—(9), that

is that the distribution function can be computed very fast. Ti/0id complicated computations of higher order cumulants. The

associated Legendre functions can be accurately compu$égond order cumulant solution is accurate at later times, but

using recurrence relations. It takes only a minute to compi8ly provides the correct mean position and the correct HWHM
10° data ofI(r, s, t) on a personal computer. at early times. We notice that the width of the distribution at

The corresponding solution in the frequency-domaif@rly times could be smaller than the size of a voxel, the average
I(r, s, w) can be obtained by making a Fourier transforrAVver the distributions at different points in a voxel smears the de-
J dtexp(—iwt)I(r, s, t). The CW solution is obtained by tail shape of the distribution. In the CW or frequency- domain
takingw = 0. cases, the shape of the distribution is further smeared by integra-

The photon densityV (r, ¢) of the second cumulant solutiontion over timet. Therefore, the second-order cumulant solution
can be a reasonable approximation in building forward models

is given by
) based on the RTE.
N(r, t) = 1 1 exp [_ (z = R:) } Since a detector usually collects emergent light within a wide
’ (47 D..ct)t/? 4Dyt 4D ct range of angle of different directions, itis convenient to compute

(22 +y?) the Green'’s function related to a detector using photon density

Texp {_ 4D, ct } exp(—pat)  (10) N(rg, t) (10)=(13), where is the position of detector.
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Fig. 4. Backscattered photon distributidtr, s = —z, ¢) emerging from

plane surface of a semi-infinite turbid medium, as a function of time, with the
Fig.3. Schematic diagram shows how to extend the cumulant solution of RfRUICe-detector distanceld. on the surface = 0 plane. The pulse source

from an infinite medium to a semi-infinite medium. is located at= = 0, incident along= direction. The extrapolated boundary
condition is used. The solid curve is obtained from cumulant approximation
(CA), up to the second cumulant. The dashed curve is from DA. The cross points
are obtained from MC simulation.
Itis essential to include the boundary effect in the solution of
the RTE when photons are injected into and spread out frone@ndition, which agrees with the MC simulation much better
finite sized medium. A proper extension of the cumulant solthan that of the DA.
tion to slab geometry is an essential step for building a forward For extending to the slab geometry, adding a series of pairs of
model. virtual “image” sources at both sides of slab is a good approxi-
A boundary condition is applied based on the following phygnation for satisfaction of the extrapolated boundary conditions
ical consideration. At early times, the center of photon distrib@n both sides of a slab [17].
tion injected into medium, moves forward into medium. Then, The heterogeneous structure of a highly scattering turbid
the distribution spreads out from the moving center with difmedium can be characterized by the following optical param-
fusion coefficients that gradually increase from zero. At eargters: the scattering raje(r), the absorption ratg,(r), and
times, the number of photons leaking out of the boundary e differential angular scattering ratg(r) (s, s', r).
negligible compared to the total number of the incident photons.A perturbation method is used which takes the photon dis-
The boundary condition plays a role at later times, when thefébution function in a uniform background slab medium as the
are many photons leaking out of the boundary. zero-order approximation. The change of the photon distribu-
The approach known as an approximate “extrapolatelion function originates from the change of optical parameters
boundary condition [16], extrapolates the boundary by gpmpared to that in the uniform bgckground slab med|um_. The
distance¢ = al,,, the extrapolation length, beyond the reathange of scattering and absorption parameters are defined as
boundaries withy ~ 0.7, at which the photon density vanisheg!lows:
To apply this boundary condition for the cumulant solution in

— 0
a semi-infinite geometry, a virtual negative sourc, is added Aps(r) = ps(r) — Mg )
to the original sources, as shown in Fig. 3. During the early Apig(r) = pig(r) — pl?

period, the solution of the RTE in an infinite uniform medium

automatically satisfied the boundary condition because the derd[isP](s, 8/, 1)
sity is near zero at the boundary, and the virtual source does not

play a role. After a time of approximatelyl4./c, the center of Where the quantities with super index (0) are the optical pa-
photon densityC, has moved and stopped at a positioh,1 fameters in a uniform background slab medium. By expanding
from the original sources and the center from virtual source,AlisP] (s, s', r) in Legendre polynomials, we obtain

Cs, has moved in a similar way. Then, the arrangement shown

in Fig. 3, produces a cancellation of contributions to the phOtéh[NsPKS? s, 1)

ps(r)P(s, 8, 1), =0 PO(s, s') (14)

density from the original source and the virtual source on the _ 1 Au.(r)a® (0) /
= — s + ps? Aay(r)] Prlcos(s - s 15
extrapolated boundary. 4 Z[ pa(r)ar 4 p ()} Pfeos(s - )] (19)
Fig. 4 shows that the time-resolved backscattered photon dis-
tribution in a semi-infinite medium on the = 0 surface, with with Aay(r) = 0, sincea, always equals 1. The physical

the source-detector distancd;l, obtained using the second-meaning is that the scattering parameters have no effect on the
order cumulant approximation and the extrapolated boundaryl = 0) component.
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Making a perturbation expansion of (1) to the first-order Born For frequency domain (or CW) data, the contribution from an
approximation, the change in the photon distribution is given @apsorbing object located aj is given by

AI(I'd-/ 54, IL/|I“s-/ Ss) Al(rdv Sd, Ts; Ss, W | rk)
. . . L
- / dfl/ dI‘/ dS,I(O) (rd7 5d, t— tl | r, Sl) = _A/La(rk)évk i

2041
~ { [ AlPIGs . D10 5.0 1) ds

1=0
Y A (ks 1o, 86, 0)Ch (18, Ta, Sa, ) (20)

— [Aps(r) + Apa (T O(r, 6, |7, Ss)} (16) and the contribution from a scattering object located;ats
given by
whereAI(ry, sq, t|rs, ss) is the change in the light intensity
received by a detector locatedrat, along the directiosy, and Al(ra, sa, 1s, Ss, @ |11
at timet, which is injected from a source locatedrat along L o4r
=—6Viy

a direction ofs,, at time¢ = 0. “Change” refers to the dif- 2A+1

ference in intensity compared to that received by the same de- =1 ©)

tector, from the same source, when light passes through a uni- N Aps(m) [1- a (o) Aag(rg)
form background slab medium. The teff) (r, s,, t|r1, s1) Hsllk 2041 Hs™ o1

is the intensity of light, calculated using the cumulant solution
of RTE, atr, along the directios, and at timet, when light is

injected from a positiom, along a direction o, attimet = 0 ) ) ) ) )
migrating in a uniform background slab medium. Comparing (18)—(21) with the corresponding weight function

The background Green’s functions in (16), obtained by cGommonly used in the DA, [1], [2] only wave ( = 0) for ab-

: ZAl'm(rlw Is, Ss, w)c?m(rb I'q, Sd, w) (21)

mulant solution, are expanded in spherical harmonics sorptive objects, and onlywave ( = 1) for scattering objects
are considered in the diffusion forward models. Besides, even
IO(r, st |rg, 8) = Z Ap (1, 1,5 Sg, 1) Yo (s), for s wave andp wave, the diffusive solution is incorrect when
I,m voxels are located near the source, as discussed before.

© , . - The previous formulae allow simulating the background
I (ra, sa, t =11, 8) = chm(r7 Tas 4, t =)V (s)- Green's function and the change of optical parameters in

t,m detail. They are also applicable to the cases where only a
A7) few parameters of the medium are known(, )sim(il;ar to that
. . 0 0
The spherical transform is performed using a fast Fourier trarf@! the diffusion forward model. When onlys™, .., and

form for the integral ovep, and a Clenshaw—Curtis quadraturg-factor for an uniform background medium are given, the

for the integral over. Henyey—-Greenstein phase function [18] is widely adopted as
Using the orthogonality relation of the spherical function an@n @Pproximate phase function

the addition theorendy | Yi,,,(s)Y;%, (s') = Pifcos(s - )], the Pleosd) — 1 1-g¢?

analytical integration overands’ in (16) can be performed. For (cosf) = 4 (1+ g% — 2gcos6)3/2

time resolved data, the contribution from an absorbing object

located atry, is given by = ﬁ 21:(21 + 1>91PI(COS 9). (22)
Al(rq, sa, T, Ss, t]11) . .
. I Although (22) uses a single parametefactor to describe a
— Ao (r1)6Vi / dat 4w phase function, this description is much better than that used
Jo o = (20+1) in the DA, which implies a phase function lineardos 6.

If Aay(r) in (21), which represent the change of the phase
function, is not considered, two optical parameters being im-
) ) aged areAp,(r) and Au(r). The reduced scattering coeffi-
wheredV;, is the volume ofkth voxel, andL is the cutoff value cientAug(1 — a§°>/3) is directly related ta\ D (change of the

in the Legendre expansion in (18). The contribution from a scfifysion coefficient) used in the DA models. The CFM, hence,
tering object located af is given by can be applied to the experimental data in a similar fashion as
that for the DA models, to obtain images of the optical parame-

. Z Alm(rk7 Is, Ss, tl Cl*m(rkv Iq, 84, t— tl) (18)

AI(I‘d, Sd, I's, Ss, t|1‘k)

L

t
_ , 4
= 6Vk/0 dtZTH)

=1

C2l+1

. ZAlm(rlw Ts, Ss, t/)Ol*m(rh Td, Sd, t— tl)- (19)

(0)
Apg(ry) (1 al_) _ ,ugO)AL@"')

ters. In the CFM, however, all contributions from higher spher-
ical waves are properly included.

The most time consuming part in computation of CFM using
the previous formulae is to build a databasedgf, andC;; .
Once itis built for a uniform background medium, the database
can be applied for imaging of various heterogeneity cases. In
parallel geometry4,,,, is a function of ¢, — x5, yx — ys) due
to the 2-D translation invariance. Since position of soutcend
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incident directiors, are fixed, only a 3-Diy, — =5, yx —ys, 2z) Multiple detectors in parallel geometries a dual 2-D Fourier
database is required. Whenis taken along: direction (light transform [ di; dfye'@™¢ida™ js performed on (23), to obtain
is injected perpendicular to surface), the scale of database is re-

dgceq to 2'—D dug to thgams symmetry. _Photons from different S/ AR, dF,je'9T eiqch(lY(f‘s7 T4, 2, 24)

directions in awide solid angle are received by a detector, as di

cussed before, photon densi¥(r, — r, s, t) is used for com- /dz /dr /d d(Fg — T)eite (=) gita(Fa=F)
puting the Green’s function associated with detectors, which is
independent o§;, andC};, can be computed much easily. The W(Fs =T, Ta — T, 2s, 2a, 2)€ i(qs+qd)FX(f; )

database can be built in a reasonable computation time because
the distribution function®) (ry, s,, ¢|ry, s1) can be rapidly which leads to
calculated using the analytical expressions. .
Y((idv 657 Zd'/ ZS) = /dZW((—l’d? 657 27 Zd7 ZS)X((_id + 657 Z)
IV. FAST 3-D HDF INVERSEALGORITHM . (24)

We now outline an inverse algorithm to quickly reconstruevhereY, X, and W are change in light intensity, change in
image of a medium from acquired measurements using tetical parameters, and the weight function in the Fourier space,
above CFM. The model, neglecting the irrelevant parametefespectively.

can be briefly written as A similar form of this dual Fourier transform has been derived
by Markel and Schotland [13], [14] in a frequency-domain dif-
Y (T4, Tss 2d, 2s) fusion model.

Equation (24) seems difficult to be used for performing the
inverse reconstruction because of the argument misnigtch
. ds) in X and ds, da) in Y andW. This difficulty occurs be-
whereR = (T, z) is the position of a voxel inside turbid cayse the weight function in (23) is related to three positions:

medium;¥ is (z, y) coordinatesR. = (i, 7) is the position 7, . and¥. To remove this complexity, the following linear
of a source; an®Ry = (T4, z4) is the position of a detector. hybrid transform is introduced:

In (23), Y (T4, Ts, 24, 2s) IS the measured change in Ilght
intensity received by a detectorlag from a point source &.. @ =qq + gs
X (T, z) is the change of the optical parameters inside turbid
medium. The weight functioW (ty — T, s — T, 2, 24, 2s)
is a function offy — I andr; — r on (z, y) plane, because of
parallel geometry, assuming an infinite sized area, and the 2-
translation invariance of the Green'’s function in a background - _ - ~
homogeneous slab. Here, the special form of the weightY(u’ Vi za, 25) = / d2W(T, ¥V, 2, za, 2:) X (4, z)  (26)
function is not relevant; the weight function can be calculated
by the CFM or the DA models, using with CW, frequencywhereY’, X, andiW are, respectivel;}?,)ﬁ',andﬁ/ as functions
or time-resolved data. This approach is general and can atgai andv.
be used for inverse problems of nonoptical measurements ilWhile (25) is a relatively simple expression, it is essential to
parallel geometries. properly realize this hybrid transform in discrete lattices of the
A light source scans through a 2-D array. Transmitted &ourier space. A procedure to quickly perform this transform
backscattered light signals emerging from the medium drem (qq, qs) coordinates to newn( v) coordinates, separately,
detected using a 2-D array of detectors, such as a charge-dou« andy components, is explained in Fig. 5 using an example
pled device (CCD) camera (or time-gated CCD camera @f a 6 x 6 lattice. The maximum value af is taken as the
the time resolved case). Each illumination of the light soureeaximum value ofj4 or qs, not the maximum value afy + qs.
provides a set of 2-D data on the 2-D detector array. For CWhe periodic property of lattice in the Fourier space is used, for
or frequency-modulated light source, this arrangement cerample,Y (u = 2, v = 4) = Y(qs = 3,qa = 5). This
produce a set of 2-Ix 2-D = 4-D data in a relatively short procedure builds a one-to-one correspondence between lattices
acquisition time, because a CCD camera produces 2-D datahe two coordinate systems. Fig. 5 shows thaand W at
of the detectors at different positions simultaneously. Whexach node [circle in Fig. 5] inu{ v) coordinates are directly
time-resolved or modulation at multiple frequencies are amapped front” andi/, respectively, at the corresponding node
plied, a set of five-dimensional (5-D) data can be acquired. The(qq, qs) coordinates without any algebraic manipulation.
inverse problems of 3-D imaging, hence, are over-determinedjn (26), a common 2-D Fourier argumernt appears
which is necessary for obtaining an accurate 3-D image. in Y, X, and W. For each value ofi, (26) leads to an
When the translation invariance is satisfied, the Fouriewer-determined 1-D problem for inverse reconstruction:
transform approach is a powerful technique to achieve a fastv) = [dzW (¥, z)X(2). In order to perform fast in-
inversion. In the Fourier space, the convolutionVgfand X  version, we invert the normal form of the forward model:
becomes a product dV and X, and the weight matrid¥ YW7 = [WTW]X for eachiit, where W7 W]is aM x M
becomes diagonal. Hence, inversion can be performed mumhtrix, with M the number of layers in direction. The original
faster. Using this concept in the case of multiple sources ald in (23) is a matrix with a large dimension. The inverse

= /df’de(f’d —T,Ts—T, 2, 24, 2s) X (T, 2) (23)

V=qq — qs- (25)

BIS results in the HDF formula
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Fig. 5. Example of a 6« 6 lattice for explaining the linear hybrid transform
from (qa, qs) coordinates toy, v) coordinates.

problem now is simplified to invert many (number of discrete

= ; ; ; : Fig. 6. 3-D image reconstructed using hybrid dual Fourier tomography. Two
value Ofu) matrices, each with a small dimensioh. The latter absorbing objects, each with the volume33 x 2 mn?, are located inside a

problem is much more computationally efficient compare@rbid medium with volume 96« 96 x 40 mn#* divided into 32x 32 x 20
to the original problem of (23). Onc& (d, z) are obtained voxels. The first one is located at position labeled (10, 10, 10) with absorption

- N : - differenceAp, = 0.01 mm~!. The second one is located at position labeled
for all @, a 2-D inverse Fourier transform produc&sr, z), (20, 20, 15) with absorption differencas, = 0.007 mm-1. A CW light

which is the 3-D image of optical parameters of the mediurgeurce incident perpendicular to the= 0 plane is scanned through a 2D 82
Markel and Schotland use different procedures for inversion. 3@ array at the plane, with each pixel 3 mar8 mm. A same sized 2D array of

i . P : fectors is located af; plane (transmission geometry). The simulated data are
[13], a Fourier-Laplace inversion is applied, hence, an analygimuced with noise 5%. A linear scale of color bar from the maximum value to

continuation of measured data to the complex plane is requirg@®imum value ofAp., is used. The numbers labels thiayers counting form
for the inverse Laplace transform. In [14], an inverse procedug@urce to the detector, layers are separated by 2 mm.

is performed in an argument space, similar to variablesre.

Sincev include 2-D variables, inversion ifi space could take o computational experiments show it takes only 1-2 min

longer time than that of inversion inspace. on a personal computer to perform an inverse reconstruction of
As discussed previously, matricé and [W " W] for each g 3-D image of a medium with a large number of voxels (for

i can be calculated in advance for a uniform background slakample, 32« 32 x 20 voxels) using this HDF algorithm.
medium. Assuming that a group of experimental data has bee

acquired, the following steps are taken to produce a 3-D im
of the medium:

Yo demonstrate our concept of HDF tomography in 3-D

aﬁr?age reconstruction, an example using simulated CW data is

presented. A slab turbid medium, with a transport mean-free

1) obtain “change” of intensitied] (¥4, Ts, 24, 2s), by sub- pathl;, = 1 mm, absorption length, = 300 mm, and
tracting the intensity for a uniform background mediunthicknessz; = 40 mm, is divided into 20 layers. A CW light
from the measured intensity; source, injected perpendicular to the = 0 plane, scans by

2) extend thex, y) area and padding zeros, to overcome thee 2-D 32 x 32 array on the plane, with each pixebk33 mm.
wraparound problem in discrete convolutions [19]; A 2-D array of detectors with the same spacing is located at

3) perform a dual 2-D fast Fourier transform (FFT) ok, plane (transmission geometry). The medium, is divided into
Sf(f'd, T, 24, zs) in the extended area to produce82 x 32 x 20 voxels, each of dimension 8 3 x 2 mn?.

Y (da, ds; 2d, 2s); Two absorbing objects are located in the medium, each with a
4) determineY (i, ¥, zq4, 2,) for eachi, using a mapping volume 3x 3 x 2 mn?. The first one located at (10, 10, 10)
procedure explained in Fig. 5; has an absorption difference &y, = 0.01 mm~! with the

5) invert YWT = [WTW]X for eachi, which is an in- background. The second one is located at (20, 20, 15) with an
verse problem involving &/ x M matrix, with M the absorption difference of 0.007 mmh. The simulated data with
number of layers along direction. Proper regularization noise level of 5% are obtained using the CFM. The tomographic
according to noise level needs to be taken into accouithages are shown in Fig. 6. As shown, the central positions of
Regularization will be discussed later in the paper; 3-D image of the objects are correct, located at a voxel (10, 10,

6) perform an inverse 2-D FFT oﬂZ(ﬁ, z) to produce 10) with dark color, and a voxel (20, 20, 15) with gray level.
X(T, 2). The resolution of image is about6 mm in the transverse
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(x, y) plane and~10 mm alongz direction. In general, the The (1-D) linear hybrid coordinate transforms= qq + qs,
axial resolution (along direction) is poorer than the lateralandv = qq — gs, for (28) leads to
resolution [on the4, ) plane]. In transmission geometry, two N .
Green’s functions in the weight function compensate each other ¥ (1, v, Ta, T5) = /dFW(m v, Iy, Tsi 1) X (0, ) (29)
when thez position of the object changes, that leads to a poor S - ) " oA R
sensitivity of the measured photon intensity to theositon WhereY, X, and W are, respectively}’, X, and W as
of the object. The shapes of 3-D image of two objects afdnctions ofu andv. For each value ofi, (29) is an over
ellipsoids with longer axis along thedirection. The absorption detérmined 2-D problem for inverse reconstruction, namely, to
difference has the maximum value at the center of ellipsoigitermine a 2-D unknown value of (u, T) from known 3-D
and decays gradually with increase distance from the centerdata ofY'(u, v, 74, ¥;) for eachu. This 3-D-2-D determination
A cutoff in discrete lattices of, andd, naturally introduces €nhances the accuracy of 3-D image compared to 2-D-2-D
a kind of regularization. This regularization is very effectived€termination in the single-Fourier transform inversion. After
Initial tests show that even adding 30% of fluctuations on simk (1, T) are obtained for alit, a 1-D inverse Fourier transform
ulated data o¥ (g, T, 24, 2), @n image similar to that shown produces the imagé (r, z).
in Fig. 6 is still reconstructed. The reason for this is that noises
come from fluctuations at different source and detector posi- V. DISCUSSION
tions, which are mainly the high-frequency componentg.of  As shown in (19) and (21), there is no contribution frem
anddq. A cutoff in gs anddq naturally eliminates these highwave to the weight function for a scattering object. This result
frequency noises, such that a stable image, especially, in)( reflects a fact that no scattering effect exists for an isotropic an-
plane, can be reconstructed in a strong noise level. gular distribution. In the regions far from sources, the weight
However, the inverse problem is still ill-posed, becaus@nction contributed from scattering objects is small because
contribution to the change of intensity from a small voxehere is no contribution from the dominantvave, as shown in
deeply inside medium is weak, and is not sensitive tozits many results based on the diffusion models []_]_[5] This non-
position in transmission case. A regularization procedure @@nsitivity of signals to the scattering objects deep inside the
inversion of Y W" = [WTW]X is still needed. The standardmedium should be considered in optical tomography. A pure
Tikhonov regularization approach [20] is applied and L-curvigotropic distribution is never achieved, otherwise, there will be
[21], [22] method is used for determining the best regularizatigip flux in any directions. In the diffusive model, a smaivave,
parameters. —(3/4m)Ds- V N, exists which maintains the photons diffusing
This fast inverse algorithm produces a 3-D image in a linegs the regions with fewer photons. The facte¥’ N represents
image regime. For nonlinear image reconstruction procedufgis effect. However, this expression is valid only in the regions
the reconstructed 3-D image provides a good initial profile feyhere thep wave is much smaller thanwave, (1/47)N, and
further refining the 3-D image taking the nonlinear effects intgoes not correctly describe the early photon propagation near
consideration. sources. Since only the weight function for scattering objects
The HDF inversion method can be extended to a cylindricglose to sources plays an important role, but it was estimated
geometry, with an arbitrary shape of the, {/) cross section, using the formula valid in regions far from sources, substantial
for 3-D image reconstruction. In this geometry, an algorith@rror introduced in the diffusion forward model for scattering
using a single Fourier inversion has been developed [23]. ThiBjects is crucial, considering, > i, in tissue.
algorithmiis limited to the case that the sources and the detectorgor the weight function of absorbing objects, contributions
are located onaplane with sameoordinates. The hybrid-dua'-from all Spherica| components, inc|udir39Nave, are given in
Fourier inverse approach in cylindrical geometry removes thigg) and (20). In commonly used diffusion formula, the con-
restriction, so more data can be acquired for 3-D tomographybution fromp wave was neglected. The diffusion coefficient
The linear forward model in cylindrical geometry is given by originally derived in the DA isD = 1/(3//, + 11.), that leads to
L AD = —D®2(3Au! +Ap,). The contribution fronp wave to
Y (Ta, T 2d; 2s) the weight function for absorbing objects, hence, should exist.
_ /dfde(f'd7 T, Tza— 2, 2s — 2)X(T, 2)  (27) However, _in the _Iater diffusion model&\ D is as_signegl only
for scattering objects and onlywave for absorbing objects is
taken. Equations (18) and (20) provide a quantitative estimation

whereW (¥4, T, T; 24 — 2, 25 — 2) is the weight function, a ; . ; . . .
function ofzy — z andz, — z due to the 1-D translation invari- of weight function for absorbing objects in regions close to the
source, as well as far from the source.

ance of the Green'’s function in a homogeneous backgroun he CFM and the HDF inverse algorithm need further

medium in cylindrical geometry (assuming infinitelength). . . . :
N . improvements in the following aspects. Further improvement
We make a dual 1-D (along direction) Fourier transform . . A . .
PR . should be considered without significantly increasing com-
[ dzq dzge'14%1e'%:%= on (27) to obtain e . s o
plexity in computation. First, the second cumulant solution is
. L. . Y s .. hotaccurate in the detailed shape of the distribution, especially,
Y(aa, qs; Ta, Ts) = /dZW(de s T Ta, Ts) X (da + 4. T)  the front edge in the Gaussian distribution violates causality.
o R (28) An empirical distribution, which keeps the exact value of the
whereY, X, and W are the Fourier space quantities correfirst and second cumulants, while satisfies the causality, can be
sponding that in (27). designed to replace the Gaussian distribution.
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Second, the boundary condition is approximate. When a[5]
more accurate distributioi(r, s, ¢t) at early time is needed,
the boundary condition for a semi-infinite geometry should be

6]
I(z,y,z=0;0, ¢, t) =0, if cos >0. (30)

This type of the boundary condition was studied by Domke [24]
for the steady state case. The solution is represented as a supgr]—
position of a solution describing a transport problem in an infi-
nite medium, and a Fredholm integral term, which corrects this(8l
solution for the appropriate half-space boundary condition. This
approach may be used for further development of the boundary
problem. 19
Third, to consider the nonlinear effec&?s in (16) should
be replaced by the Green’s function in a real heterogeneouyso]
medium. Among the high-order perturbative corrections of
the Green’s function, the “self-energy” diagram, which counts, ;
photon round trips through a position up to infinite times,
plays an important role. Gandjbakhcaeal. [25] studied this
effect using a random walk model. We find that a renormal?
ization procedure for this nonlinear effect can be performedi3]
after image is obtained using a linear inversion process. This
renormalization procedure can recover the optimal value of thﬁ4
optical parameters and can improve the resolution of image.
The detailed results of the renormalization will be published
elsewhere. [15]
The translation invariance is valid for the parallel geometry
assuming that thex( y) area is infinite. We suppose that this
assumption of the infinite area is reasonable. How much err
arises due to the finite area of a sample will be studied in details.
Use of the simulated data mainly tests the validity of the
inverse algorithm, does not test accuracy of the forward modet.
Experimental data from phantoms and in vivo measurements
in human body will be performed for further testing of our
approach. [18]
[19]
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