Skip to main content
Hunter College
  • Information for
    • Students
    • Alumni & Friends
    • Faculty
    • Staff
    • Community
  • QUICK LINKS
  • DIRECTORY
  • APPLY
  • GIVE
  • RENT
Hunter College The School of Arts & Sciences
Hunter College The School of Arts & Sciences
The School
  • Office of the Dean
  • Departments & Programs
  • Undergraduate Academics
  • Graduate Academics
  • Awards & Scholarships
  • Resources for Students
  • Resources for Faculty & Staff
  • Faculty Awards & Achievements
  • News & Events
  • Contact Us
Departments & Programs (A-H)
  • Africana, Puerto Rican & Latino Studies
  • Anthropology
  • Art & Art History
  • Asian American Studies
  • Biological Sciences
  • Chemistry
  • Classical & Oriental Studies
  • Computer Science
  • Creative Writing
  • Dance
  • Economics/Accounting
  • English
  • Film & Media Studies
  • Geography & Environmental Science
  • German
  • History
  • Human Biology
  • Human Rights
Departments & Programs (I-Z)
  • Jewish Studies
  • Latin American & Caribbean Studies
  • Macaulay Honors College
  • Mathematics & Statistics
  • Medical Laboratory Sciences
  • Music
  • Philosophy
  • Physics & Astronomy
  • Political Science
  • Psychology
  • Public Policy
  • Religion
  • Romance Languages
  • Sociology
  • Theatre
  • Thomas Hunter Honors Program
  • Translation & Interpreting
  • Urban Policy and Planning
  • Women & Gender Studies
  • Admissions
  • Advising
  • Libraries
  • Undergraduate Catalog
  • Graduate Catalog
 
Hunter College Home
Hunter College Schools
  • School of Arts & Sciences
  • School of Education
  • School of Health Professions
  • Hunter-Bellevue School of Nursing
  • Silberman School of Social Work
More Schools
  • Hunter College Campus Schools
  • Hunter College Continuing Education
  • Libraries
  • Undergraduate Catalog
  • Graduate Catalog
  • Students
  • Alumni & Friends
  • Faculty
  • Staff
  • Community
  • Admissions
  • Advising
  • APPLY
  • GIVE
  • RENT
  • QUICK LINKS
  • DIRECTORY
School of Arts and Sciences /
Physics and Astronomy
  • About
  • Undergraduate
  • Graduate
  • Courses
  • Faculty and Staff
  • Research
    • Biomedical Photonics Laboratory
    • Ultrafast Optics and Spectroscopy Lab
    • Laser Laboratory
    • Solid State NMR/EPR Laboratory
    • Staff
  • Resources
  • News
  • Contact
Yuhang Ren

Yuhang Ren

Professor and Director of Ultrafast Optics and Spectroscopy
Research Areas
Electronic Materials, Nonlinear Femtosecond Laser Spectroscopy and Condensed Matter Physics

Dr. Yuhang Ren is in charge of the Ultrafast Optics and Spectroscopy facility and is a professor in the Department of Physics and Astronomy.

See Contact Details

Profile

Yuhang Ren is a tenured full Professor of Physics and Astronomy at Hunter College and Graduate Center of the City University of New York. Dr. Ren received a B.Sc. with Honors in Physics in 1995 from the Zhejiang Normal University, a Ph.D. with Honors in Condensed Matter Physics from the Zhejiang University in 1999, and a Ph.D. in Applied Science from the College of William and Mary in 2003. He was Department Chair of Physics and Astronomy and President of Procedure Committee at Hunter College between 2010 and 2014. Dr. Ren has authored/co-authored over 100 papers in Condensed Matter Physics and Ultrafast Laser Spectroscopy and he holds over 120 patents in solar thin film materials and applications. He received an ACS-PRF Award in 2006, a NYSTAR Award in 2011, a NY Powerbridge Award in 2017 and IF Gold Award in 2019.

Educational Background

  • Postdoctoral Research Fellow, University of Michigan, 2003-2005
  • PhD in Applied Science, College of William and Mary, 2003
    • Thesis: Time-Resolved Optical Studies of Colossal Magneto-Resistance and Charge- Density Wave Materials
  • PhD with Honors in Condensed Matter Physics, Zhejiang University, 1999 
    • Thesis: Confined Polaron in Low-dimensional Semiconductor Heterojunctions (Honored)
  • BS with Honors in Physics, Zhejiang Normal University, 1995

Research Interests & Activites

Dr. Ren's research interests include the following:

  • Condensed Matter Physics
  • Ultrafast Laser Spectroscopy
  • Solar thin film materials and applications

Dr. Ren is working on the nonlinear optical characterization of materials germane to the breakdown, or other failure, modes associated with thermal degradation, electromechanical processes in prototypical dielectrics and new developed ferroelectrics. For these studies, he has developed advanced nonlinear optical techniques including SHG microscopy and time-resolved two color pump-probe spectroscopy to image and understand in-situ coupled breakdown processes around interfaces and bulk boundaries that are difficult to obtain through other methods. Both techniques have been adapted to dielectric and ferroelectric samples, including BaTiO3 and SrTiO3 to study ionic defect electromigration, space charge accumulation, ionic degradation, and electrical and thermal breakdown near grain boundaries and interfaces.

Most recently, Dr. Ren has developed a nanometer-resolution, ultrafast laser acoustic technique to image nano scale structural defects and ferroelectric domain boundaries for optimization of high performance energy storage devices. The time-resolved spectroscopic measurements will allow him to investigate local phenomena such as those occurring at grain boundaries that determine the overall conversion efficiency of solar cells. The focus of Dr. Ren's research is also to create new ideas for generating a robust prototype fabrication process for low-cost thin film solar cells and energy storage devices in terms of reliability, uniformity, and conversion efficiency.

Learn More About the Ultrafast Optics and Spectroscopy Lab

Courses

Courses Taught
  • Basic Concepts of Physics (Physics 100)
  • General Physics: Introduction to Mechanics, Heat and Sound (Physics 111)
  • Algebra-based Introductory Physics II (Physics 120)
  • Calculus-based Introductory Physics II (Physics 121)
  • Classical Physics Lab (Physics 230)
  • Modern Physics Laboratory (Physics 235)
  • Atomic & Nuclear Physics (Physics 330)
  • Intermediate Electricity & Magnetism (Physics 334)
  • Solid State (Physics 445/645)

Publications

No. Publication
1. “Engineering nanoscale polarization at the SrTiO3/Ge interface”, T. Le, O. Kurt, J. Ouyang, J. J. Wang, L. Q. Chen, E. L. Lin, J. G. Ekerdt, and Y. H. Ren*, Scripta Materialia 178, 489-492 (2020).
2. “Strain Engineering of Dischargeable Energy Density of Ferroelectric Thin-Film Capacitors”, J. J. Wang, Y. J. Su, B. Wang, J. Ouyang, Y. H. Ren, and L. Q. Chen, Nano Energy, 72, 104665 (2020).
3. “Local structural changes due to the electric field‐induced migration of oxygen vacancies at Fe‐doped SrTiO3 interfaces”, David Ascienzo, Onur Kurt, Steve Greenbaum, Thorsten J. M. Bayer, Maier Russell, Jianjun Wang, Clive A. Randall, and Yuhang Ren*, Journal of the American Ceramic Society, 102, 4353-4366 (2019).
4. “Analysis of ferroelectric nanostructures—spectroscopic methods/second harmonic generation polarimetry”, Y. H. Ren, Nanostructures in Ferroelectric Films for Energy Applications, 339-357 (2019).
5. “Detection of Nanoscale Structural Defects in Degraded Fe-Doped SrTiO3 by Ultrafast Photoacoustic Waves”, Y. Zhang, O. Kurt, D. Ascienzo, Q. Yang, T. Le, S. G. Greenbaum, T. J. M. Bayer, C. A. Randall, Y. H. Ren*, The Journal of Physical Chemistry C, 122, 12864 (2018).
6. “Optimization of the defects and nonradiative lifetime of undoped GaAs/AlGaAs double heterostructures”, Z. Cevher, P. Folkes, H. Hier, B. VanMil, B. C. Connelly, W. Beck, and Y. H. Ren*, Journal of Applied Physics 123, 161512 (2018).
7. “Formation of structural defects and strain in electrodegraded Fe‐doped SrTiO3 crystals due to oxygen vacancy migration”, D. Ascienzo, O. Kurt, S. Greenbaum, T. J. M Bayer, R. A Maier, C. A. Randall, Y. H. Ren*, Journal of the American Ceramic Society, 101, 2545 (2018).
8. “Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films”, H. B. Cheng, J. Ouyang*, Y. X. Zhang, D. Ascienzo, Y. Li, Y. Y. Zhao and Y. H. Ren*, Nature Communications, 8, 1999 (2017).
9. “Nonlinear optical detections of structural distortions at degraded Fe-doped SrTiO3 interfaces” O. Kurt, D. Ascienzo, S. Greenbaum, T. J. M.  Bayer, C. A. Randall, N. Madamopoulos, Y. H. Ren*, Materials Chemistry and Physics, 198, 131 (2017).
10. “Experimental demonstration of 55-fs spin canting in photoexcited iron nanoarrays”, Yuhang Ren*, Wei Lai, Zehra Cevher, Yu Gong, and G. P. Zhang, Applied Physics Letters, 110, 082404 (2017).
11. Probing electrocolored Fe-doped SrTiO3 bulks using optical second harmonic generation”, D. Ascienzo, S, Greenbaum, T.J.M. Bayer, C. A. Randall, Y. H. Ren*, Acta Materialia, 126, 520 (2017).
12. Printable and flexible phototransistors based on blend of organic semiconductor and biopolymer”, J. Huang, J. Du, Z. Cevher, Y. H. Ren, X. Wu, Y. Chu, Advanced Functional Materials, 27, 1604163 (2017).
13. “Investigation of electric field–induced structural changes at Fe-doped SrTiO3 anode interfaces by second harmonic generation”, D. Ascienzo, H. Yuan, S. Greenbaum, T.J.M. Bayer, R. A. Maier, J. J. Wang, E. C. Dickey, H. B. Zhao, and Y. H. Ren*, Materials 9, 883 (2016).
14. “Observation of structural inhomogeneity at degraded Fe-doped SrTiO3 interfaces”, D. Ascienzo, S. Greenbaum, T.J.M. Bayer, R. Maier, C. A. Randall, Y. H. Ren*, Applied Physics Letters 109, 031602 (2016).
15. Energy barrier at the N719-dye/CsSnI3 iterface for photogenerated holesin dye-sensitized solar cells, Jin Zhang, Chunhui Yu, Lili Wang, Yizhi Li, Yuhang Ren, Kai Shum, Scientific Reports, 4, 6954 (2014).
16. Ultrafast optical detection of magnetic inhomogeneity in ferromagnetic La0.67Ca0.33MnO3, Y. Gong, Z. Zhang, D. Ascienzo, Y. Abranyos, H. B. Zhao, G. Lupke, Qi Li, Y. H. Ren, Europhysics Letters, 108, 17010 (2014).
17. One-pot synthesis and characterization of chalcopyrite CuInS2 nanoparticles, Chivin Sun, Zehra Cevher, Jin Zhang, Bo Gao, Kai Shum, and Yuhang Ren, J. Mater. Chem. A, 2, 10629 (2014).

Contact Details

Yuhang Ren

Physics & Astronomy
68th Street North 1204
(212) 772-5258
yre@hunter.cuny.edu

HUNTER

Hunter College
695 Park Ave NY, NY 10065
(212) 772-4000

  • Facebook
  • Twitter
  • Instagram
  • Flickr
  • ABOUT
  • ACADEMICS
  • ADMISSIONS
  • EVENTS
  • NEWS
Hunter College Schools
  • School of Arts & Sciences
  • School of Education
  • School of Health Professions
  • Hunter-Bellevue School of Nursing
  • Silberman School of Social Work
  • School of Arts & Sciences
  • School of Education
  • School of Health Professions
  • Hunter-Bellevue School of Nursing
  • Silberman School of Social Work
Our Other Schools
  • Hunter College Campus Schools
  • Hunter College Continuing Education
  • Hunter College Campus Schools
  • Hunter College Continuing Education
Hunter College Libraries
More Info
  • Bookstore
  • Contact Us & Feedback
  • Jobs
  • Public Safety
  • Roosevelt House
  • Student Housing
  • Space Rentals
  • Bookstore
  • Contact Us & Feedback
  • Jobs
  • Public Safety
  • Roosevelt House
  • Student Housing
  • Space Rentals
Public Information
  • Annual Security & Fire Safety Report
  • Consumer Information
  • CUNY Tobacco Policy
  • Enough is Enough
  • Focus on Campus
  • Annual Security & Fire Safety Report
  • Consumer Information
  • CUNY Tobacco Policy
  • Enough is Enough
  • Focus on Campus
CUNY
  • © 2025 Hunter College
  • Accessibility
  • Privacy
  • Terms